In this paper, we prove the existence and uniqueness result of the reflected BSDE with two continuous barriers under monotonicity and general increasing condition on $y$, with Lipschitz condition on $z$.
In this paper we study different algorithms for reflected backward stochastic differential equations (BSDE in short) with two continuous barriers basing on random work framework. We introduce different numerical algorithms by penalization method and reflected method. At last simulation results are also presented.
In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this construction is that the convergence sequence is monotone, which is helpful to establish the relation between doubly reflected G-BSDEs and double obstacle fully nonlinear partial differential equations.
Forward-backward stochastic differential equations (FBSDEs) have attracted significant attention since they were introduced almost 30 years ago, due to their wide range of applications, from solving non-linear PDEs to pricing American-type options. Here, we consider two new classes of multidimensional FBSDEs with distributional coefficients (elements of a Sobolev space with negative order). We introduce a suitable notion of a solution, show existence and uniqueness of a strong solution of the first FBSDE, and weak existence for the second. We establish a link with PDE theory via a nonlinear Feynman-Kac representation formula. The associated semi-linear second order parabolic PDE is the same for both FBSDEs, also involves distributional coefficients and has not previously been investigated; our analysis uses mild solutions, Sobolev spaces and semigroup theory.
We consider a class of Backward Stochastic Differential Equations with superlinear driver process $f$ adapted to a filtration supporting at least a $d$ dimensional Brownian motion and a Poisson random measure on ${mathbb R}^m- {0}.$ We consider the following class of terminal conditions $xi_1 = infty cdot 1_{{tau_1 le T}}$ where $tau_1$ is any stopping time with a bounded density in a neighborhood of $T$ and $xi_2 = infty cdot 1_{A_T}$ where $A_t$, $t in [0,T]$ is a decreasing sequence of events adapted to the filtration ${mathcal F}_t$ that is continuous in probability at $T$. A special case for $xi_2$ is $A_T = {tau_2 > T}$ where $tau_2$ is any stopping time such that $P(tau_2 =T) =0.$ In this setting we prove that the minimal supersolutions of the BSDE are in fact solutions, i.e., they attain almost surely their terminal values. We further show that the first exit time from a time varying domain of a $d$-dimensional diffusion process driven by the Brownian motion with strongly elliptic covariance matrix does have a continuous density; therefore such exit times can be used as $tau_1$ and $tau_2$ to define the terminal conditions $xi_1$ and $xi_2.$ The proof of existence of the density is based on the classical Greens functions for the associated PDE.
The theory of one-dimensional stochastic differential equations driven by Brownian motion is classical and has been largely understood for several decades. For stochastic differential equations with jumps the picture is still incomplete, and even some of the most basic questions are only partially understood. In the present article we study existence and uniqueness of weak solutions to [ {rm d}Z_t=sigma(Z_{t-}){rm d} X_t ]driven by a (symmetric) $alpha$-stable Levy process, in the spirit of the classical Engelbert-Schmidt time-change approach. Extending and completing results of Zanzotto we derive a complete characterisation for existence und uniqueness of weak solutions for $alphain(0,1)$. Our approach is not based on classical stochastic calculus arguments but on the general theory of Markov processes. We proof integral tests for finiteness of path integrals under minimal assumptions.