Do you want to publish a course? Click here

Doubly Reflected Backward SDEs Driven by G-Brownian Motion--a Monotone Approach

126   0   0.0 ( 0 )
 Added by Hanwu Li
 Publication date 2020
  fields
and research's language is English
 Authors Hanwu Li




Ask ChatGPT about the research

In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this construction is that the convergence sequence is monotone, which is helpful to establish the relation between doubly reflected G-BSDEs and double obstacle fully nonlinear partial differential equations.



rate research

Read More

169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
106 - Xing Huang , Fen-Fen Yang 2020
Sufficient and necessary conditions are presented for the comparison theorem of path dependent $G$-SDEs. Different from the corresponding study in path independent $G$-SDEs, a probability method is applied to prove these results. Moreover, the results extend the ones in the linear expectation case.
128 - Shige Peng , Huilin Zhang 2015
In this paper, we build the equivalence between rough differential equations driven by the lifted $G$-Brownian motion and the corresponding Stratonovich type SDE through the Wong-Zakai approximation. The quasi-surely convergence rate of Wong-Zakai approximation to $G-$SDEs with mesh-size $frac{1}{n}$ in the $alpha$-Holder norm is estimated as $(frac{1}{n})^{frac12-}.$ As corollary, we obtain the quasi-surely continuity of the above RDEs with respect to uniform norm.
132 - Fenfen Yang 2018
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, where the $sup$-kernel is introduced in this paper for the first time.
This paper is devoted to studying the properties of the exit times of stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs). In particular, we prove that the exit times of $G$-SDEs has the quasi-continuity property. As an application, we give a probabilistic representation for a large class of fully nonlinear elliptic equations with Dirichlet boundary.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا