Do you want to publish a course? Click here

Well displacing representations and orbit maps

227   0   0.0 ( 0 )
 Added by Francois Labourie
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We discuss in this article a property of action of groups by isometries called well displacing. An action is said to be well displacing, if the displacement function is equivalent to the the displacement function for the action on the Cayley graph. We relate this property with the fact that orbit maps are quasi-isometric embeddings. We first describe countrexamples that shows this two notions are unrelated in general. On the other hand we explain that for a certain class of groups -- in particular hyperbolic groups -- these two properties are equivalent. In the course of our discussion, we introduce an intrinsic property of the group -- that we called the U-property -- which says quantitatively how the norm an element is controlled by the translation length of finitely many related conjugacy classes. This property play a central role in our discussion.



rate research

Read More

We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddings between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.
98 - Yongju Bae 2018
Wreath products of finite groups have permutation representations that are constructed from the permutation representations of their constituents. One can envision these in a metaphoric sense in which a rope is made from a bundle of threads. In this way, subgroups and quotients are easily visualized. The general idea is applied to the finite subgroups of the special unitary group of $(2times 2)$-matrices. Amusing diagrams are developed that describe the unit quaternions, the binary tetrahedral, octahedral, and icosahedral group as well as the dicyclic groups. In all cases, the quotients as subgroups of the permutation group are readily apparent. These permutation representations lead to injective homomorphisms into wreath products.
201 - Paolo Bellingeri 2011
We consider exact sequences and lower central series of surface braid groups and we explain how they can prove to be useful for obtaining representations for surface braid groups. In particular, using a completely algebraic framework, we describe the notion of extension of a representation introduced and studied recently by An and Ko and independently by Blanchet.
We prove that various subgroups of the mapping class group $Mod(Sigma)$ of a surface $Sigma$ are at least exponentially distorted. Examples include the Torelli group (answering a question of Hamenstadt), the point-pushing and surface braid subgroups, and the Lagrangian subgroup. Our techniques include a method to compute lower bounds on distortion via representation theory and an extension of Johnson theory to arbitrary subgroups of $H_1(Sigma;mathbb{Z})$.
In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the $SL_2$-character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribranched surfaces) from ideal points of the $SL_n$-character variety for a natural number $n$ greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا