Do you want to publish a course? Click here

Communication through plasma sheaths

555   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.



rate research

Read More

88 - G. Rowlands , M. A. Allen 2006
The equations describing planar magnetoacoustic waves of permanent form in a cold plasma are rewritten so as to highlight the presence of a naturally small parameter equal to the ratio of the electron and ion masses. If the magnetic field is not nearly perpendicular to the direction of wave propagation, this allows us to use a multiple-scale expansion to demonstrate the existence and nature of nonlinear wave solutions. Such solutions are found to have a rapid oscillation of constant amplitude superimposed on the underlying large-scale variation. The approximate equations for the large-scale variation are obtained by making an adiabatic approximation and in one limit, new explicit solitary pulse solutions are found. In the case of a perpendicular magnetic field, conditions for the existence of solitary pulses are derived. Our results are consistent with earlier studies which were restricted to waves having a velocity close to that of long-wavelength linear magnetoacoustic waves.
Exact four-photon resonance of collinear planar laser pulses is known to be prohibited by the classical dispersion law of electromagnetic waves in plasma. We show here that the renormalization produced by an arbitrarily small relativistic electron nonlinearity removes this prohibition. The laser frequency shifts in collinear resonant four-photon scattering increase with laser intensities. For laser pulses of frequencies much greater than the electron plasma frequency, the shifts can also be much greater than the plasma frequency and even nearly double the input laser frequency at still small relativistic electron nonlinearities. This may enable broad range tunable lasers of very high frequencies and powers. Since the four-photon scattering does not rely on the Langmuir wave, which is very sensitive to plasma homogeneity, such lasers would also be able to operate at much larger plasma inhomogeneities than lasers based on stimulated Raman scattering in plasma.
It is shown that an electron-neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum (OAM) states, similar to the OAM photon states. Coupling between different OAM neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transfered to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. Observation of neutrino OAM states could eventually become possible.
579 - N. S. Dzhalilov (1 , 2 , 2009
Wave properties and instabilities in a magnetized, anisotropic, collisionless, rarefied hot plasma in fluid approximation are studied, using the 16-moments set of the transport equations obtained from the Vlasov equations. These equations differ from the CGL-MHD fluid model (single fluid equations by Chew, Goldberger, and Low, 1956) by including two anisotropic heat flux evolution equations, where the fluxes invalidate the double polytropic CGL laws. We derived the general dispersion relation for linear compressible wave modes. Besides the classic incompressible fire hose modes there appear four types of compressible wave modes: two fast and slow mirror modes - strongly modified compared to the CGL model - and two thermal modes. In the presence of initial heat fluxes along the magnetic field the wave properties become different for the waves running forward and backward with respect to the magnetic field. The well known discrepancies between the results of the CGL-MHD fluid model and the kinetic theory are now removed: i) The mirror slow mode instability criterion is now the same as that in the kinetic theory. ii) Similarly, in kinetic studies there appear two kinds of fire hose instabilities - incompressible and compressible ones. These two instabilities can arise for the same plasma parameters, and the instability of the new compressible oblique fire hose modes can become dominant. The compressible fire hose instability is the result of the resonance coupling of three retrograde modes - two thermal modes and a fast mirror mode. The results can be applied to the theory of solar and stellar coronal and wind models.
We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionless damping via resonant wave-particle interactions versus dissipation in small-scale current sheets in weakly collisional plasma turbulence. Current sheets form self-consistently from the wave-driven turbulence, and their filling fraction is well correlated to the electron heating rate. However, the weakly collisional nature of the simulation necessarily implies that the current sheets are not significantly dissipated via Ohmic dissipation. Rather, collisionless damping via the Landau resonance with the electrons is sufficient to account for the measured heating as a function of scale in the simulation, without the need for significant Ohmic dissipation. This finding suggests the possibility that the dissipation of the current sheets is governed by resonant wave-particle interactions and that the locations of current sheets correspond spatially to regions of enhanced heating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا