Do you want to publish a course? Click here

Background study for the pn-CCD detector of CERN Axion Solar Telescope

271   0   0.0 ( 0 )
 Added by Markus Kuster
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) seems to be dominated by the external gamma background due to usual activities at the experimental site, while radioactive impurities in the detector itself and cosmic neutrons could make just smaller contribution.



rate research

Read More

113 - M. Kuster 2005
The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I type X-ray optics in combination with a prototype pn-CCD developed for ESAs XMM-Newton mission. As in other rare event searches, background suppression and a thorough shielding concept is essential to improve the sensitivity of the experiment to the best possible. In this context CAST offers the opportunity to study the background of pn-CCDs and its long term behavior in a terrestrial environment with possible implications for future space applications. We will present a systematic study of the detector background of the pn-CCD of CAST based on the data acquired since 2002 including preliminary results of our background simulations.
We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a $sim$~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or slumped) glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for solar axions. The combination of the XRT and Micromegas detector provides the best signal-to-noise ratio obtained so far by any detection system of the CAST experiment with a background rate of 5.4$times$10$^{-3};$counts per hour in the energy region-of-interest and signal spot area.
295 - R. Horvat , M. Krcmar , B. Lakic 2003
We explore the potential of the CERN Axion Solar Telescope (CAST) for testing the presence of large extra dimensions. The CAST experiment has originally been proposed to search for solar axions with a sensitivity supposed to provide a limit on the axion-photon coupling g_{agammagamma}<5x10^{-11} GeV^{-1} or even lower. The expected bound on the coupling constant is by a factor of ten more stringent than the current experimental results. This bound extends for the first time beyond the limit dictated by astrophysical considerations. As a tuning experiment planning to explore the axion mass region up to about 1 eV, CAST would also be sensitive to the existence of Kaluza-Klein massive states. Therefore, the detection of X-rays at least at two pressures may be the signature of large extra dimensions. From this requirement we find that CAST may test (two) large extra dimensions with a (common) compactification radius R down to around 250 nm if m_{PQ}<1/(2R), and down to around 370 nm if 1/(2R)<m_{PQ}, where m_{PQ} is the Peccei-Quinn mass.
173 - K. Marton , G. Kiss , A. Laszlo 2014
The NA61 Experiment at CERN SPS is a large acceptance hadron spectrometer, aimed to studying of hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions in a fixed target environment. The present paper discusses the construction and performance of the Low Momentum Particle Detector (LMPD), a small time projection chamber unit which has been added to the NA61 setup in 2012. The LMPD considerably extends the detector acceptance towards the backward region, surrounding the target in hadron-nucleus interactions. The LMPD features simultaneous range and ionization measurements, which allows for particle identification and momentum measurement in the 0.1-0.25 GeV/c momentum range for protons. The possibility of Z=1 particle identification in this range is directly demonstrated.
The Deep Underground Neutrino Experiment (DUNE) is a leading-edge, international experiment for neutrino science and proton decay studies. This experiment is looking for answers regarding several fundamental questions about the nature of matter and the evolution of the universe: origin of matter, unification of forces, physics of black holes. Two far detector prototypes using two distinct technologies have been developed at CERN. The prototypes are testing and validating the liquid argon time projection chamber technology (LArTPC). In neutrino physics, as well as in any experiment with rare interaction rate, the good knowledge of the radioactive backgrounds is important to the success of the study. Unlike most of the charged particles or short lived neutral particles, muons and neutrons represent the main sources of background for this kind of experiments. In this paper, we have considered two sources of neutrons: cosmic neutrons and neutrons coming from the accelerating tunnel. Also, cosmic muons are taken into account. The contribution of these particles to the production of radioactive isotopes inside the active volume of the detector in comparison to the one corresponding to muons is shown. Also, simulations of nuclear reactions for the processes of interest for investigating the radioactive background due to the lack of measurements or insufficient experimental data are presented. The results presented are of interest for the future underground DUNE experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا