Do you want to publish a course? Click here

A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

75   0   0.0 ( 0 )
 Added by Theopisti Dafni
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas (micromesh gaseous structure) detector of the microbulk technique. The detector is made from radiopure materials and is placed at the focal point of a $sim$~5 cm diameter, 1.3 m focal-length, cone-approximation Wolter I x-ray telescope (XRT) comprised of thermally-formed (or slumped) glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector) proposed in the conceptual design of the project. It is innovative for two reasons: it is the first time an x-ray optic has been designed and fabricated specifically for axion research, and the first time a Micromegas detector has been operated with an x-ray optic. The line has been installed at one end of the CERN Axion Solar Telescope (CAST) magnet and is currently looking for solar axions. The combination of the XRT and Micromegas detector provides the best signal-to-noise ratio obtained so far by any detection system of the CAST experiment with a background rate of 5.4$times$10$^{-3};$counts per hour in the energy region-of-interest and signal spot area.

rate research

Read More

113 - M. Kuster 2005
The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I type X-ray optics in combination with a prototype pn-CCD developed for ESAs XMM-Newton mission. As in other rare event searches, background suppression and a thorough shielding concept is essential to improve the sensitivity of the experiment to the best possible. In this context CAST offers the opportunity to study the background of pn-CCDs and its long term behavior in a terrestrial environment with possible implications for future space applications. We will present a systematic study of the detector background of the pn-CCD of CAST based on the data acquired since 2002 including preliminary results of our background simulations.
Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. Several technologies have been developed to reduce the Kr concentration in such experiments. We propose to augment those separation technologies by first adding to the xenon an 85Kr-free sample of krypton in an amount much larger than the natural krypton that is already present. After the purification system reduces the total Kr concentration to the same level, the final 85Kr concentration will have been reduced even further by the dilution factor. A test cell for measurement of the activity of various Kr samples has been assembled, and the activity of 25-year-old Krypton has been measured. The measured activity agrees well with the expected activity accounting for the 85Kr abundance of the earth atmosphere in 1990 and the half-life of the isotope. Additional tests with a Kr sample produced in the year 1944 (before the atomic era) have been done in order to demonstrate the sensitivity of the test cell.
156 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2%iC$_4$H$_{10}$ at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.
121 - F.J. Iguaz , J.G. Garza , F. Aznar 2016
Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass $sim$0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detectors response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.
263 - F.J. Iguaz , J.G. Garza , F. Aznar 2015
If Dark Matter is made of Weakly Interacting Massive Particles (WIMPs) with masses below $sim$20 GeV, the corresponding nuclear recoils in mainstream WIMP experiments are of energies too close, or below, the experimental threshold. Gas Time Projection Chambers (TPCs) can be operated with a variety of target elements, offer good tracking capabilities and, on account of the amplification in gas, very low thresholds are achievable. Recent advances in electronics and in novel radiopure TPC readouts, especially micro-mesh gas structure (Micromegas), are improving the scalability and low-background prospects of gaseous TPCs. Here we present TREX-DM, a prototype to test the concept of a Micromegas-based TPC to search for low-mass WIMPs. The detector is designed to host an active mass of $sim$0.300 kg of Ar at 10 bar, or alternatively $sim$0.160 kg of Ne at 10 bar, with an energy threshold below 0.4 keVee, and is fully built with radiopure materials. We will describe the detector in detail, the results from the commissioning phase on surface, as well as a preliminary background model. The anticipated sensitivity of this technique may go beyond current experimental limits for WIMPs of masses of 2-8 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا