Do you want to publish a course? Click here

Control of mechanical systems on Lie groups and ideal hydrodynamics

179   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

In contrast to the Euler-Poincar{e} reduction of geodesic flows of left- or right-invariant metrics on Lie groups to the corresponding Lie algebra (or its dual), one can consider the reduction of the geodesic flows to the group itself. The reduced vector field has a remarkable hydrodynamic interpretation: it is a velocity field for a stationary flow of an ideal fluid. Right- or left-invariant symmetry fields of the reduced field define vortex manifolds for such flows. Consider now a mechanical system, whose configuration space is a Lie group and whose Lagrangian is invariant to left translations on that group, and assume that the mass geometry of the system may change under the action of internal control forces. Such system can also be reduced to the Lie group. With no controls, this mechanical system describes a geodesic flow of the left-invariant metric, given by the Lagrangian, and thus its reduced flow is a stationary ideal fluid flow on the Lie group. The standard control problem for such system is to find the conditions, under which the system can be brought from any initial position in the configuration space to another preassigned position by changing its mass geometry. We show that under these conditions, by changing the mass geometry, one can also bring one vortex manifold to any other preassigned vortex manifold.



rate research

Read More

We derive an optimal control formulation for a nonholonomic mechanical system using the nonholonomic constraint itself as the control. We focus on Suslovs problem, which is defined as the motion of a rigid body with a vanishing projection of the body frame angular velocity on a given direction $boldsymbol{xi}$. We derive the optimal control formulation, first for an arbitrary group, and then in the classical realization of Suslovs problem for the rotation group $SO(3)$. We show that it is possible to control the system using the constraint $boldsymbol{xi}(t)$ and demonstrate numerical examples in which the system tracks quite complex trajectories such as a spiral.
The purpose of this paper is to describe explicitly the solution for linear control systems on Lie groups. In case of linear control systems with inner derivations, the solution is given basically by the product of the exponential of the associated invariant system and the exponential of the associated invariant drift field. We present the solutions in low dimensional cases and apply the results to obtain some controllability results.
We study a constrained optimal control problem for an ensemble of control systems. Each sub-system (or plant) evolves on a matrix Lie group, and must satisfy given state and control action constraints pointwise in time. In addition, certain multiplexing requirement is imposed: the controller must be shared between the plants in the sense that at any time instant the control signal may be sent to only one plant. We provide first-order necessary conditions for optimality in the form of suitable Pontryagin maximum principle in this problem. Detailed numerical experiments are presented for a system of two satellites performing energy optimal maneuvers under the preceding family of constraints.
For controller design for systems on manifolds embedded in Euclidean space, it is convenient to utilize a theory that requires a single global coordinate system on the ambient Euclidean space rather than multiple local charts on the manifold or coordinate-free tools from differential geometry. In this article, we apply such a theory to design model predictive tracking controllers for systems whose dynamics evolve on manifolds and illustrate its efficacy with the fully actuated rigid body attitude control system.
125 - Xing Wang , Bo Li , Jr-Shin Li 2021
In this paper, we study graphical conditions for structural controllability and accessibility of drifted bilinear systems over Lie groups. We consider a bilinear control system with drift and controlled terms that evolves over the special orthogonal group, the general linear group, and the special unitary group. Zero patterns are prescribed for the drift and controlled dynamics with respect to a set of base elements in the corresponding Lie algebra. The drift dynamics must respect a rigid zero-pattern in the sense that the drift takes values as a linear combination of base elements with strictly non-zero coefficients; the controlled dynamics are allowed to follow a free zero pattern with potentially zero coefficients in the configuration of the controlled term by linear combination of the controlled base elements. First of all, for such bilinear systems over the special orthogonal group or the special unitary group, the zero patterns are shown to be associated with two undirected or directed graphs whose connectivity and connected components ensure structural controllability/accessibility. Next, for bilinear systems over the special unitary group, we introduce two edge-colored graphs associated with the drift and controlled zero patterns, and prove structural controllability conditions related to connectivity and the number of edges of a particular color.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا