Do you want to publish a course? Click here

Quantisations of piecewise affine maps on the torus and their quantum limits

191   0   0.0 ( 0 )
 Added by Serge Troubetzkoy
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking.



rate research

Read More

Mixed-mode oscillations (MMOs) are complex oscillatory patterns in which large-amplitude relaxation oscillations (LAOs) alternate with small-amplitude oscillations (SAOs). MMOs are found in singularly perturbed systems of ordinary differential equations of slow-fast type, and are typically related to the presence of so-called folded singularities and the corresponding canard trajectories in such systems. Here, we introduce a canonical family of three-dimensional slow-fast systems that exhibit MMOs which are induced by relaxation-type dynamics, and which are hence based on a jump mechanism, rather than on a more standard canard mechanism. In particular, we establish a correspondence between that family and a class of associated one-dimensional piecewise affine maps (PAMs) which exhibit MMOs with the same signature. Finally, we give a preliminary classification of admissible mixed-mode signatures, and we illustrate our findings with numerical examples.
70 - Mauricio Poletti 2017
We prove that for Anosov maps of the $3$-torus if the Lyapunov exponents of absolutely continuous measures in every direction are equal to the geometric growth of the invariant foliations then $f$ is $C^1$ conjugated to his linear part.
In this paper, we establish a coupling lemma for standard families in the setting of piecewise expanding interval maps with countably many branches. Our method merely requires that the expanding map satisfies Chernovs one-step expansion at $q$-scale and eventually covers a magnet interval. Therefore, our approach is particularly powerful for maps whose inverse Jacobian has low regularity and those who does not satisfy the big image property. The main ingredients of our coupling method are two crucial lemmas: the growth lemma in terms of the characteristic $cZ$ function and the covering ratio lemma over the magnet interval. We first prove the existence of an absolutely continuous invariant measure. What is more important, we further show that the growth lemma enables the liftablity of the Lebesgue measure to the associated Hofbauer tower, and the resulting invariant measure on the tower admits a decomposition of Pesin-Sinai type. Furthermore, we obtain the exponential decay of correlations and the almost sure invariance principle (which is a functional version of the central limit theorem). For the first time, we are able to make a direct relation between the mixing rates and the $cZ$ function, see (ref{equ:totalvariation1}). The novelty of our results relies on establishing the regularity of invariant density, as well as verifying the stochastic properties for a large class of unbounded observables. Finally, we verify our assumptions for several well known examples that were previously studied in the literature, and unify results to these examples in our framework.
Chaotic dynamics can be quite heterogeneous in the sense that in some regions the dynamics are unstable in more directions than in other regions. When trajectories wander between these regions, the dynamics is complicated. We say a chaotic invariant set is heterogeneous when arbitrarily close to each point of the set there are different periodic points with different numbers of unstable dimensions. We call such dynamics heterogeneous chaos (or hetero-chaos), While we believe it is common for physical systems to be hetero-chaotic, few explicit examples have been proved to be hetero-chaotic. Here we present two more explicit dynamical systems that are particularly simple and tractable with computer. It will give more intuition as to how complex even simple systems can be. Our maps have one dense set of periodic points whose orbits are 1D unstable and another dense set of periodic points whose orbits are 2D unstable. Moreover, they are ergodic relative to the Lebesgue measure.
We consider families of dynamics that can be described in terms of Perron-Frobenius operators with exponential mixing properties. For piecewise C^2 expanding interval maps we rigorously prove continuity properties of the drift J(l) and of the diffusion coefficient D(l) under parameter variation. Our main result is that D(l) has a modulus of continuity of order O(|dl||log|dl|)^2), i.e. D(l) is Lipschitz continuous up to quadratic logarithmic corrections. For a special class of piecewise linear maps we provide more precise estimates at specific parameter values. Our analytical findings are verified numerically for the latter class of maps by using exact formulas for the transport coefficients. We numerically observe strong local variations of all continuity properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا