Do you want to publish a course? Click here

Geometric growth for Anosov maps on the $3$ torus

71   0   0.0 ( 0 )
 Added by Mauricio Poletti
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We prove that for Anosov maps of the $3$-torus if the Lyapunov exponents of absolutely continuous measures in every direction are equal to the geometric growth of the invariant foliations then $f$ is $C^1$ conjugated to his linear part.



rate research

Read More

65 - Danyu Zhang 2021
We show a fibre-preserving self-diffeomorphism which has hyperbolic splittings along the fibres on a compact principal torus bundle is topologically conjugate to a map that is linear in the fibres.
Using analytic properties of Blaschke factors we construct a family of analytic hyperbolic diffeomorphisms of the torus for which the spectral properties of the associated transfer operator acting on a suitable Hilbert space can be computed explicitly. As a result, we obtain explicit expressions for the decay of correlations of analytic observables without resorting to any kind of perturbation argument.
For each $ninmathbb{Z}^+$, we show the existence of Venice masks (i.e. intransitive sectional-Anosov flows with dense periodic orbits) containing $n$ equilibria on certain compact 3-manifolds. These examples are characterized because of the maximal invariant set is a finite union of homoclinic classes. Here, the intersection between two different homoclinic classes is contained in the closure of the union of unstable manifolds of the singularities.
59 - Mauricio Poletti 2017
We prove that in an open and dense set, Symplectic linear cocycles over time one maps of Anosov flows, have positive Lyapunov exponents for SRB measures.
65 - Yong Fang 2005
We classify five dimensional Anosov flows with smooth decomposition which are in addition transversely symplectic. Up to finite covers and a special time change, we find exectly the suspensions of symplectic hyperbolic automorphisms of four dimensional toris, and the geodesic flows of three dimensional hyperbolic manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا