Do you want to publish a course? Click here

Probing non-standard decoherence effects with solar and KamLAND neutrinos

403   0   0.0 ( 0 )
 Added by Antonio Palazzo
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been speculated that quantum gravity might induce a foamy space-time structure at small scales, randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or neutrinos). Particle interferometry might then reveal non-standard decoherence effects, in addition to standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the phenomenology of such non-standard effects in the propagation of electron neutrinos in the Sun and in the long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of decoherence at neutrino energies E ~ few MeV. In the solar neutrino case, by means of a perturbative approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy domain (E^n with n = 0,+/-1,+/-2), theoretical predictions for two-family neutrino mixing are compared with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of non-standard decoherence effects, whose characteristic parameter gamma_0 can thus be significantly constrained. In the Lorentz-invariant case n=-1, we obtain the upper limit gamma_0<0.78 x 10^-26 GeV at 95% C.L. In the specific case n=-2, the constraints can also be interpreted as bounds on possible matter density fluctuations in the Sun, which we improve by a factor of ~ 2 with respect to previous analyses.



rate research

Read More

Most neutrino mass extensions of the standard electroweak model entail non-standard interactions which, in the low energy limit, can be parametrized in term of effective four-fermion operators $ u_alpha u_beta bar f f $. Typically of sub-weak strength, $epsilon_{alpha beta} G_F$, these are characterized by dimensionless coupling parameters, $epsilon_{alpha beta}$, which may be relatively sizeable in a wide class of schemes. Here we focus on non-universal (NU) flavor conserving couplings ($alpha = beta$) with electrons ($f = e$) and analyse their impact on the phenomenology of solar neutrinos. We consistently take into account their effect both at the level of propagation where they modify the standard MSW behavior, and at the level of detection, where they affect the cross section of neutrino elastic scattering on electrons. We find limits which are comparable to other existing model-independent constraints.
We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelop e within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant
Solar neutrino experiments have yet to see directly the transition region between matter-enhanced and vacuum oscillations. The transition region is particularly sensitive to models of non-standard neutrino interactions and propagation. We examine several such non-standard models, which predict a lower-energy transition region and a flatter survival probability for the ^{8}B solar neutrinos than the standard large-mixing angle (LMA) model. We find that while some of the non-standard models provide a better fit to the solar neutrino data set, the large measured value of theta_{13} and the size of the experimental uncertainties lead to a low statistical significance for these fits. We have also examined whether simple changes to the solar density profile can lead to a flatter ^{8}B survival probability than the LMA prediction, but find that this is not the case for reasonable changes. We conclude that the data in this critical region is still too poor to determine whether any of these models, or LMA, is the best description of the data.
We extract information on the fluxes of Be and CNO neutrinos directly from solar neutrino experiments, with minimal assumptions about solar models. Next we compare these results with solar models, both standard and non standard ones. Finally we discuss the expectations for Borexino, both in the case of standard and non standard neutrinos.
99 - S. Abe , S. Asami , A. Gando 2021
We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. We found no statistical excess of neutrinos and established 90% confidence level upper limits of $8.4 times 10^7$,cm$^{-2}$ ($3.0 times 10^{9}$,cm$^{-2}$) on electron anti-neutrino (electron neutrino) fluence at 20,MeV normalized to the X12 flare, assuming that the neutrino fluence is proportional to the X-ray intensity. The 90% C.L. upper limits from this work exclude the entire region of parameter space associated with the Homestake event excess for the large solar flare in 1991.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا