Do you want to publish a course? Click here

INTEGRAL and Multiwavelength Observations of the Blazar Mrk 421 during an Active Phase

151   0   0.0 ( 0 )
 Added by Andreas von Kienlin
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A ToO observation of the TeV-emitting blazar Mrk 421 with INTEGRAL was triggered in June 2006 by an increase of the RXTE count rate to more than 30 mCrab. The source was then observed with all INTEGRAL instruments with the exception of the spectrometer SPI for a total exposure of 829 ks. During this time several outbursts were observed by IBIS and JEM-X. Multiwavelength observations were immediately triggered and the source was observed at radio, optical and X-ray wavelengths up to TeV energies. The data obtained during these observations are analysed with respect to spectral evolution and correlated variability. Preliminary results of the analysis are presented in this poster.



rate research

Read More

We report the results of a multi-wavelength campaign on the blazar Mrk 421 during outburst. We observed four strong flares at X-ray energies that were not seen at other wavelengths (partially because of missing data). From the fastest rise in the X-rays, an upper limit could be derived on the extension of the emission region. A time lag between high-energy and low-energy X-rays was observed, which allowed an estimation of the magnetic-field strength. The spectral analysis of the X-rays revealed a slight spectral hardening of the low-energy (3 - 43 keV) spectral index. The hardness-ratio analysis of the Swift-XRT (0.2 - 10 keV) data indicated a small correlation with the intensity; i. e., a hard-to-soft evolution was observed. At the energies of IBIS/ISGRI (20 - 150 keV), such correlations are less obvious. A multiwavelength spectrum was composed and the X-ray and bolometric luminosities are calculated.
We present the results of a multiwavelength campaign for Mrk 501 performed in March 1996 with ASCA, EGRET, Whipple, and optical telescopes. In the X-ray band, a spectral break was observed around 2 keV. We report here for the first time the detection of high-energy gamma-ray flux from Mrk 501 with EGRET with 3.5 sigma significance (E>100 MeV). Higher flux was also observed in April/May 1996, with 4.0 sigma significance for E>100 MeV, and 5.2 sigma significance for E>500 MeV. The gamma-ray spectrum was measured to be flatter than most of the gamma-ray blazars. We find that the multiband spectrum in 1996 is consistent with that calculated from a one-zone SSC model in a homogeneous region. In the context of this model, we investigate the values of the magnetic field strength and the beaming factor allowed by the observational results. We compare the March 1996 multiwavelength spectrum with that in the flare state in April 1997. Between these two epochs, the TeV flux increase is well correlated with that observed in keV range. The keV and TeV amplitudes during the April 1997 flare are accurately reproduced, assuming that the population of synchrotron photons in 1996 are scattered by the newly injected relativistic electrons, having maximum energies of G_max = 6.0e6. However, the TeV spectrum observed during March 1996 campaign is flatter than predicted by our models. We find that this cannot be explained by either higher order Comptonization or the contribution of the `seed IR photons from the host galaxy for the first-order external radiation Comptonization.
115 - Alok C. Gupta 2008
In the present paper, we have reported the result of simultaneous multi-wavelength observations of the TeV blazar Mrk 421 during February $-$ March 2003. In this period, we have observed Mrk 421 using Pachmarhi Array of v{C}erenkov Telescopes (PACT) of Tata Institute of Fundamental Research at Pachmarhi, India. Other simultaneous data were taken from the published literature and public data archives. We have analyzed the high quality X-ray (2-20 keV) observations from the NASA Rossi X-Ray Timing Explorer (RXTE). We have seen a possible correlated variability between X-ray and J band (1.25 $mu$) near infrared (NIR) wavelength. This is the first case of X-ray and NIR correlated variability in Mrk 421 or any high energy peaked (HBL) blazar. The correlated variability reported here is indicating a similar origin for NIR and X-ray emission. The emission is not affected much by the environment of the surrounding medium around the central engine of the Mrk 421. The observations are consistent with the shock-in-jet model for the emission of radiations.
We study the multi-wavelength variability of the blazar Mrk 421 at minutes to days timescales using simultaneous data at $gamma$-rays from Fermi, 0.7-20 keV energies from AstroSat, and optical and near-infrared (NIR) wavelengths from ground-based observatories. We compute the shortest variability timescales at all of the above wavebands and find its value to be ~1.1 ks at the hard X-ray energies and increasingly longer at soft X-rays, optical and NIR wavelengths as well as at the GeV energies. We estimate the value of the magnetic field to be 0.5 Gauss and the maximum Lorentz factor of the emitting electrons ~1.6 x $10^5$ assuming that synchrotron radiation cooling drives the shortest variability timescale. Blazars vary at a large range of timescales often from minutes to years. These results, as obtained here from the very short end of the range of variability timescales of blazars, are a confirmation of the leptonic scenario and in particular the synchrotron origin of the X-ray emission from Mrk 421 by relativistic electrons of Lorentz factor as high as $10^5$. This particular mode of confirmation has been possible using minutes to days timescale variability data obtained from AstroSat and simultaneous multi-wavelength observations.
Removing outbursts from multiwavelength light curves of the blazar Mrk~421, we construct outburstless time series for this system. A model-independent power spectrum light curve analysis in the optical, hard X-ray and gamma-rays for this outburstless state and also the full light-curves, show clear evidence for a periodicity of ~ 310 days across all wavelengths studied. A subsequent full maximum likelihood analysis fitting an eclipse model confirms a periodicity of 310 pm 1 days. The power spectrum of the signal in the outburstless state of the source does not follow a flicker noise behaviour and so, the system producing it is not self-organised. This and the fact that the periodicity is better defined in the outburstless state, strongly suggests that it is not produced by any internal physical processes associated to the central engine. The simplest physical mechanism to which this periodicity could be ascribed is a dynamical effect produced by an orbiting supermassive black hole companion eclipsing the central engine. Interestingly, the optimal eclipse model infers a brightness enhancement of (136.4 pm 20 )%, suggesting an eclipse resulting in a gravitational lensing brightening. Consisting with this interpretation, the eclipse occurs for only ( 9.7 pm 0.2)% of the orbital period.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا