No Arabic abstract
We examine the infrared properties of five low surface brightness galaxies (LSBGs) and compare them with related but higher surface brightness galaxies, using Spitzer Space Telescope images and spectra. All the LSBGs are detected in the 3.6 and 4.5um bands, representing the stellar population. All but one are detected at 5.8 and 8.0um, revealing emission from hot dust and aromatic molecules, though many are faint or point-like at these wavelengths. Detections of LSBGs at the far-infrared wavelengths, 24, 70, and 160um, are varied in morphology and brightness, with only two detections at 160um, resulting in highly varied spectral energy distributions. Consistent with previous expectations for these galaxies, we find that detectable dust components exist for only some LSBGs, with the strength of dust emission dependent on the existence of bright star forming regions. However, the far-infrared emission may be relatively weak compared with normal star-forming galaxies.
We present Very Large Array ({sc vla}) and Westerbork Synthesis Radio Telescope ({sc wsrt}) 21-cm H{sc i} observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low H{sc i} surface densities, about a factor of $sim 3$ lower than in normal late-type galaxies. We show that LSB galaxies in some respects resemble the outer parts of late-type normal galaxies, but may be less evolved. LSB galaxies are more gas-rich than their high surface brightness counterparts. The rotation curves of LSB galaxies rise more slowly than those of HSB galaxies of the same luminosity, with amplitudes between 50 and 120~km~s$^{-1}$, and are often still increasing at the outermost measured point. The shape of the rotation curves suggests that LSB galaxies have low matter surface densities. We use the average total mass surface density of a galaxy as a measure for the evolutionary state, and show that LSB galaxies are among the least compact, least evolved galaxies. We show that both $M_{rm HI}/L_B$ and $M_{rm dyn}/L_B$ depend strongly on central surface brightness, consistent with the surface brightness--mass-to-light ratio relation required by the Tully-Fisher relation. LSB galaxies are therefore slowly evolving galaxies, and may well be low surface density systems in all respects.
We present 3.6 and 4.5 micron Spitzer IRAC imaging over 0.77 square degrees at the Virgo cluster core for the purpose of understanding the formation mechanisms of the low surface brightness intracluster light features. Instrumental and astrophysical backgrounds that are hundreds of times higher than the signal were carefully characterized and removed. We examine both intracluster light plumes as well as the outer halo of the giant elliptical M87. For two intracluster light plumes, we use optical colors to constrain their ages to be greater than 3 & 5 Gyr, respectively. Upper limits on the IRAC fluxes constrain the upper limits to the masses, and optical detections constrain the lower limits to the masses. In this first measurement of mass of intracluster light plumes we find masses in the range of 5.5 x 10^8 - 4.5 x 10^9 and 2.1 x 10^8 - 1.5 x 10^9 solar masses for the two plumes for which we have coverage. Given their expected short lifetimes, and a constant production rate for these types of streams, integrated over Virgos lifetime, they can account for the total ICL content of the cluster implying that we do not need to invoke ICL formation mechanisms other than gravitational mechanisms leading to bright plumes. We also examined the outer halo of the giant elliptical M87. The color profile from the inner to outer halo of M87 (160 Kpc) is consistent with either a flat or optically blue gradient, where a blue gradient could be due to younger or lower metallicity stars at larger radii. The similarity of the age predicted by both the infrared and optical colors (> few Gyr) indicates that the optical measurements are not strongly affected by dust extinction.
We present deep, pointed $^{12}$CO($J=2-1$) observations of three late-type LSB galaxies. The beam-size was small enough that we could probe different environments (HI maximum, HI mininum, star forming region) in these galaxies. No CO was found at any of the positions observed. We argue that the implied lack of molecular gas is real and not caused by conversion factor effects. The virtual absence of a molecular phase may explain the very low star formation rates in these galaxies.
We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telescope filter systems. We compare our calculations to observed SBF-color relations of systems that span a wide range of age and metallicity. Consistent with previous studies, we find that single-age population models show excellent agreement with observations of low-mass galaxies with $0.5 lesssim g - i lesssim 0.9$. For bluer galaxies, the observed relation is better fit by models with composite stellar populations. To study SBF recovery from low-luminosity systems, we perform detailed image simulations in which we inject fully populated model galaxies into deep ground-based images from real observations. Our simulations show that LSST will provide data of sufficient quality and depth to measure SBF magnitudes with precisions of ${sim}0.2$-0.5 mag in ultra-faint $left(mathrm{10^4 leq M_star/M_odot leq 10^5}right)$ and low-mass classical (M$_starleq10^7$ M$_odot$) dwarf galaxies out to ${sim}4$ Mpc and ${sim}25$ Mpc, respectively, within the first few years of its deep-wide-fast survey. Many significant practical challenges and systematic uncertainties remain, including an irreducible sampling scatter in the SBFs of ultra-faint dwarfs due to their undersampled stellar mass functions. We nonetheless conclude that SBFs in the new generation of wide-field imaging surveys have the potential to play a critical role in the efficient confirmation and characterization of dwarf galaxies in the nearby universe.
SHELS (Smithsonian Hectospec Lensing Survey) is a dense redshift survey covering a 4 square degree region to a limiting R = 20.6. In the construction of the galaxy catalog and in the acquisition of spectroscopic targets, we paid careful attention to the survey completeness for lower surface brightness dwarf galaxies. Thus, although the survey covers a small area, it is a robust basis for computation of the slope of the faint end of the galaxy luminosity function to a limiting M_R = -13.3 + 5logh. We calculate the faint end slope in the R-band for the subset of SHELS galaxies with redshif ts in the range 0.02 <= z < 0.1, SHELS_{0.1}. This sample contains 532 galaxies with R< 20.6 and with a median surface brightness within the half light radius of SB_{50,R} = 21.82 mag arcsec^{-2}. We used this sample to make one of the few direct measurements of the dependence of the faint end of the galaxy luminosity function on surface brightness. For the sample as a whole the faint end slope, alpha = -1.31 +/- 0.04, is consistent with both the Blanton et al. (2005b) analysis of the SDSS and the Liu et al. (2008) analysis of the COSMOS field. This consistency is impressive given the very different approaches of th ese three surveys. A magnitude limited sample of 135 galaxies with optical spectroscopic reds hifts with mean half-light surface brightness, SB_{50,R} >= 22.5 mag arcsec^{-2} is unique to SHELS_{0.1}. The faint end slope is alpha_{22.5} = -1.52+/- 0.16. SHELS_{0.1} shows that lower surface brightness objects dominate the faint end slope of the l uminosity function in the field, underscoring the importance of surface brightness limits in evaluating measurements of the faint end slope and its evolution.