No Arabic abstract
SHELS (Smithsonian Hectospec Lensing Survey) is a dense redshift survey covering a 4 square degree region to a limiting R = 20.6. In the construction of the galaxy catalog and in the acquisition of spectroscopic targets, we paid careful attention to the survey completeness for lower surface brightness dwarf galaxies. Thus, although the survey covers a small area, it is a robust basis for computation of the slope of the faint end of the galaxy luminosity function to a limiting M_R = -13.3 + 5logh. We calculate the faint end slope in the R-band for the subset of SHELS galaxies with redshif ts in the range 0.02 <= z < 0.1, SHELS_{0.1}. This sample contains 532 galaxies with R< 20.6 and with a median surface brightness within the half light radius of SB_{50,R} = 21.82 mag arcsec^{-2}. We used this sample to make one of the few direct measurements of the dependence of the faint end of the galaxy luminosity function on surface brightness. For the sample as a whole the faint end slope, alpha = -1.31 +/- 0.04, is consistent with both the Blanton et al. (2005b) analysis of the SDSS and the Liu et al. (2008) analysis of the COSMOS field. This consistency is impressive given the very different approaches of th ese three surveys. A magnitude limited sample of 135 galaxies with optical spectroscopic reds hifts with mean half-light surface brightness, SB_{50,R} >= 22.5 mag arcsec^{-2} is unique to SHELS_{0.1}. The faint end slope is alpha_{22.5} = -1.52+/- 0.16. SHELS_{0.1} shows that lower surface brightness objects dominate the faint end slope of the l uminosity function in the field, underscoring the importance of surface brightness limits in evaluating measurements of the faint end slope and its evolution.
We present an analysis of the properties of the lowest Halpha-luminosity galaxies (L_Halpha<4x10^32 W; SFR<0.02 Msun/yr) in the Galaxy And Mass Assembly (GAMA) survey. These galaxies make up the the rise above a Schechter function in the number density of systems seen at the faint end of the Halpha luminosity function. Above our flux limit we find that these galaxies are principally composed of intrinsically low stellar mass systems (median stellar mass =2.5x10^8 Msun) with only 5/90 having stellar masses M>10^10 Msun. The low SFR systems are found to exist predominantly in the lowest density environments (median density ~0.02 galaxy Mpc^-2 with none in environments more dense than ~1.5 galaxy Mpc^-2). Their current specific star formation rates (SSFR; -8.5 < log(SSFR[yr^-1])<-12.) are consistent with their having had a variety of star formation histories. The low density environments of these galaxies demonstrates that such low-mass, star-forming systems can only remain as low-mass and forming stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.
We have conducted a spectroscopic survey to find faint quasars (-26.0 < M_{1450} < -22.0) at redshifts z=3.8-5.2 in order to measure the faint end of the quasar luminosity function at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg^2. Thirty candidates have R <= 23 mags. We conducted spectroscopic followup for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z <5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450A. Considering only our R <= 23 sample, the best-fit single power-law (Phi propto L^beta) gives a faint-end slope beta = -1.6+/-0.2. If we consider our larger, but highly incomplete sample going one magnitude fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law luminosity function. Our best fit finds a bright-end slope, alpha = -2.4+/-0.2, and faint-end slope, beta = -2.3+/-0.2, without a well-constrained break luminosity. This is effectively a single power-law, with beta = -2.7+/-0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.
We measure the faint end slope of the galaxy luminosity function (LF) for cluster galaxies at 1<z<1.5 using Spitzer IRAC data. We investigate whether this slope, alpha, differs from that of the field LF at these redshifts, and with the cluster LF at low redshifts. The latter is of particular interest as low-luminosity galaxies are expected to undergo significant evolution. We use seven high-redshift spectroscopically confirmed galaxy clusters drawn from the IRAC Shallow Cluster Survey to measure the cluster galaxy LF down to depths of M* + 3 (3.6 microns) and M* + 2.5 (4.5 microns). The summed LF at our median cluster redshift (z=1.35) is well fit by a Schechter distribution with alpha[3.6] = -0.97 +/- 0.14 and alpha[4.5] = -0.91 +/- 0.28, consistent with a flat faint end slope and is in agreement with measurements of the field LF in similar bands at these redshifts. A comparison to alpha in low-redshift clusters finds no statistically significant evidence of evolution. Combined with past studies which show that M* is passively evolving out to z~1.3, this means that the shape of the cluster LF is largely in place by z~1.3. This suggests that the processes that govern the build up of the mass of low-mass cluster galaxies have no net effect on the faint end slope of the cluster LF at z<1.3.
Using new Keck DEIMOS spectroscopy, we examine the origin of the steep number counts of ultra-faint emission-line galaxies recently reported by Dressler et al. (2011). We confirm six Lyman Alpha emitters (LAEs), three of which have significant asymmetric line profiles with prominent wings extending 300-400 km/s redward of the peak emission. With these six LAEs, we revise our previous estimate of the number of faint LAEs in the Dressler et al. survey. Combining these data with the density of bright LAEs in the Cosmic Origins Survey and Subaru Deep Field provides the best constraints to date on the redshift 5.7 LAE luminosity function (LF). Schechter function parameters, phi^* = 4.5 x 10^{-4} Mpc^{-3}, L^* = 9.1 x 10^{42} erg s^{-1}, and alpha= -1.70, are estimated using a maximum likelihood technique with a model for slit losses. To place this result in the context of the UV-selected galaxy population, we investigate how various parameterizations of the Lyman Alpha equivalent width distribution, along with the measured UV-continuum LF, affect shape and normalization of the Lyman Alpha LF. The nominal model, which uses z~6 equivalent widths from the literature, falls short of the observed space density of LAEs at the bright end, possibly indicating a need for higher equivalent widths. This parameterization of the equivalent width distribution implies that as many as 50% of our faintest LAEs should have M_{UV} > -18.0, rendering them undetectable in even the deepest Hubble Space Telescope surveys at this redshift. Hence, ultra-deep emission-line surveys find some of the faintest galaxies ever observed at the end of the reionization epoch. Such faint galaxies likely enrich the intergalactic medium with metals and maintain its ionized state. Observations of these objects provide a glimpse of the building blocks of present-day galaxies at an early time.
We present and discuss optical measurements of the faint end of the galaxy luminosity function down to M_R = -10 in five different local environments of varying galaxy density and morphological content. The environments we studied, in order of decreasing galaxy density, are the Virgo Cluster, the NGC 1407 Group, the Coma I Group, the Leo Group and the NGC 1023 Group. Our results come from a deep wide-angle survey with the NAOJ Subaru 8 m Telescope on Mauna Kea and are sensitive down to very faint surface-brightness levels. Galaxies were identified as group or cluster members on the basis of their surface brightness and morphology. The faintest galaxies in our sample have R ~ 22.5. There were thousands of fainter galaxies but we cannot distinguish cluster members from background galaxies at these faint limits so do not attempt to determine a luminosity function fainter than M_R = -10. In all cases, there are far fewer dwarfs than the numbers of low mass halos anticipated by cold dark matter theory. The mean logarithmic slope of the luminosity function between M_R = -18 and M_R = -10 is alpha ~ -1.2, far shallower than the cold dark matter mass function slope of alpha ~ -1.8. We would therefore need to be missing about 90 per cent of the dwarfs at the faint end of our sample in all the environments we study to achieve consistency with CDM theory.