We show that Green function methods can be straightforwardly applied to nonlinear equations appearing as the leading order of a short time expansion. Higher order corrections can be then computed giving a satisfactory agreement with numerical results. The relevance of these results relies on the possibility of fully exploiting a gradient expansion in both classical and quantum field theory granting the existence of a strong coupling expansion. Having a Green function in this regime in quantum field theory amounts to obtain the corresponding spectrum of the theory.
We prove the following theorems: 1) The Laurent expansions in epsilon of the Gauss hypergeometric functions 2F1(I_1+a*epsilon, I_2+b*epsilon; I_3+p/q + c epsilon; z), 2F1(I_1+p/q+a*epsilon, I_2+p/q+b*epsilon; I_3+ p/q+c*epsilon;z), 2F1(I_1+p/q+a*epsilon, I_2+b*epsilon; I_3+p/q+c*epsilon;z), where I_1,I_2,I_3,p,q are arbitrary integers, a,b,c are arbitrary numbers and epsilon is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function 2F1(I_1+p/q+a*epsilon, I_2+b*epsilon; I_3+c*epsilon;z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums (see Eq. (2)) and the multiple rational sums (see Eq. (3)) are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions (see Eq. (4)) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials.
It is shown how, starting from a mapping theorem recently proved between massless quartic scalar field theory and Yang-Mills theory, both two-point functions and spectrum of the Yang-Mills theory can be obtained. These results compare very well with respect to lattice computations.
We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.html
We first write down a very general description of nonlinear classical electrodynamics, making use of generalized constitutive equations and constitutive tensors. Our approach includes non-Lagrangian as well as Lagrangian theories, allows for electromagnetic fields in the widest possible variety of media (anisotropic, piroelectric, chiral and ferromagnetic), and accommodates the incorporation of nonlocal effects. We formulate electric-magnetic duality in terms of the constitutive tensors. We then propose a supersymmetric version of the general constitutive equations, in a superfield approach.
We will present some (formal) arguments that any Feynman diagram can be understood as a particular case of a Horn-type multivariable hypergeometric function. The advantages and disadvantages of this type of approach to the evaluation of Feynman diagrams is discussed.