Do you want to publish a course? Click here

Generalizations of Nonlinear and Supersymmetric Classical Electrodynamics

139   0   0.0 ( 0 )
 Added by Gerald Goldin
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We first write down a very general description of nonlinear classical electrodynamics, making use of generalized constitutive equations and constitutive tensors. Our approach includes non-Lagrangian as well as Lagrangian theories, allows for electromagnetic fields in the widest possible variety of media (anisotropic, piroelectric, chiral and ferromagnetic), and accommodates the incorporation of nonlocal effects. We formulate electric-magnetic duality in terms of the constitutive tensors. We then propose a supersymmetric version of the general constitutive equations, in a superfield approach.



rate research

Read More

We analyze the component structure of models for 4D N = 1 supersymmetric nonlinear electrodynamics that enjoy invariance under continuous duality rotations. The N = 1 supersymmetric Born-Infeld action is a member of this family. Such dynamical systems have a more complicated structure, especially in the presence of supergravity, as compared with well-studied effective supersymmetric theories containing at most two derivatives (including nonlinear Kahler sigma-models). As a result, when deriving their canonically normalized component actions, it becomes impractical and cumbersome to follow the traditional approach of (i) reducing to components; and then (ii) applying a field-dependent Weyl and local chiral transformation. It proves to be more efficient to follow the Kugo-Uehara scheme which consists of (i) extending the superfield theory to a super-Weyl invariant system; and then (ii) applying a plain component reduction along with imposing a suitable super-Weyl gauge condition. Here we implement this scheme to derive the bosonic action of self-dual supersymmetric electrodynamics coupled to the dilaton-axion chiral multiplet and a Kahler sigma-model. In the fermionic sector, the action contains higher derivative terms. In the globally supersymmetric case, a nonlinear field redefinition is explicitly constructed which eliminates all the higher derivative terms and brings the fermionic action to a one-parameter deformation of the Akulov-Volkov action for the Goldstino. The Akulov-Volkov action emerges, in particular, in the case of the N = 1 supersymmetric Born-Infeld action.
It is known that supersymmetric nonlinear sigma models for the compact Kahler manifolds G/H cannot be consistently coupled to supergravity, since the Kahler potentials are not invariant under the G transformation. We show that the supersymmetric nonlinear sigma models can be deformed such that the Kahler potential be exactly G-invariant if and only if one enlarges the manifolds by dropping all the U(1)s in the unbroken subgroup H. Then, those nonlinear sigma models can be coupled to supergravity without losing the G invariance.
We construct a Lagrangian for general nonlinear electrodynamics that features electric and magnetic potentials on equal footing. In the language of this Lagrangian, discrete and continuous electric-magnetic duality symmetries can be straightforwardly imposed, leading to a simple formulation for theories with the $SO(2)$ duality invariance. When specialized to the conformally invariant case, our construction provides a manifestly duality-symmetric formulation of the recently discovered ModMax theory. We briefly comment on a natural generalization of this approach to $p$-forms in $2p+2$ dimensions.
We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا