Do you want to publish a course? Click here

Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In

118   0   0.0 ( 0 )
 Added by Xavier Moya
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Applying a magnetic field to a ferromagnetic Ni$_{50}$Mn$_{34}$In$_{16}$ alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first order structural transition is studied by magnetization, strain, and neutron diffraction studies under magnetic field.

rate research

Read More

The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refrigeration by using recently discovered giant MCE materials. In this letter, we report on an inverse situation in Ni-Mn-Sn alloys, whereby applying a magnetic field adiabatically, rather than removing it, causes the sample to cool. This has been known to occur in some intermetallic compounds, for which a moderate entropy increase can be induced when a field is applied, thus giving rise to an inverse magnetocaloric effect. However, the entropy change found for some ferromagnetic Ni-Mn-Sn alloys is just as large as that reported for giant MCE materials, but with opposite sign. The giant inverse MCE has its origin in a martensitic phase transformation that modifies the magnetic exchange interactions due to the change in the lattice parameters.
At certain compositions Ni-Mn-$X$ Heusler alloys ($X$: group IIIA-VA elements) undergo martensitic transformations, and many of them exhibit inverse magnetocaloric effects. In alloys where $X$ is Sn, the isothermal entropy change is largest among the Heusler alloys, particularly in Ni$_{50}$Mn$_{37}$Sn$_{13}$ where it reaches a value of 20 Jkg$^{-1}$K$^{-1}$ for a field of 5T. We substitute Ni with Fe and Co in this alloy, each in amounts of 1 at% and 3 at% to perturb the electronic concentration and examine the resulting changes in the magnetocaloric properties. Increasing both Fe and Co concentrations causes the martensitic transition temperature to decrease, whereby the substitution by Co at both compositions or substituting 1 at% Fe leads to a decrease in the magnetocaloric effect. On the other hand, the magnetocaloric effect in the alloy with 3 at% Fe leads to an increase in the value of the entropy change to about 30 Jkg$^{-1}$K$^{-1}$ at 5T.
We report a systematic study on the magneto-structural transition in Mn-rich Fe-doped Mn-Fe-Ni-Sn(Sb/In) Heusler alloys by keeping the total valence electron concentration (e/a ratio) fixed. The martensitic transition (MT) temperature is found to shift by following a proportional relationship with the e/a ratio of the magnetic elements alone. The magnetic entropy change across MT for a selected sample (Mn49FeNi40Sn9In) has been estimated from three different measurement methods (isofield magnetization (M) vs temperature (T), isothermal M vs field (H) and heat capacity (HC) vs T). We observed that though the peak value of magnetic entropy change changes with the measurement methods, the broadened shape of the magnetic entropy change vs T curves and the corresponding cooling power (~140 Jkg-1) remains invariant. The equivalent adiabatic temperature change ~ -2.6 K has been obtained from indirect measurements of temperature change. Moreover, an exchange bias field ~ 783 Oe at 5 K and a magnetoresistance of -30% are also obtained in one of these materials.
We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler alloy Ni$_{50}$Mn$_{35}$In$_{15}$ by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results in 6 T are compared with data obtained from heat-capacity experiments. We find a saturation of the inverse MCE, related to the first-order martensitic transition, with a maximum adiabatic temperature change of $Delta T_{ad} = -7$ K at 250 K and a conventional field-dependent MCE near the second-order ferromagnetic transition in the austenitic phase. The pulsed magnetic field data allow for an analysis of the temperature response of the sample to the magnetic field on a time scale of $sim 10$ to 100 ms which is on the order of typical operation frequencies (10 to 100 Hz) of magnetocaloric cooling devices. Our results disclose that in shape-memory alloys the different contributions to the MCE and hysteresis effects around the martensitic transition have to be carefully considered for future cooling applications.
Polycrystalline Heusler compounds Ni2Mn0.75Cu0.25Ga0.84Al0.16 with a martensitic transition between ferromagnetic phases and Ni2Mn0.70Cu0.30Ga0.84Al0.16 with a magnetostructural transformation were investigated by magnetization and thermal measurements, both as a function of temperature and magnetic field. The compound Ni2Mn0.75Cu0.25Ga0.84Al0.16 presents a large magnetocaloric effect among magnetically aligned structures and its causes are explored. In addition, Ni2Mn0.70Cu0.30Ga0.84Al0.16 shows very high, although irreversible, entropy and adiabatic temperature change at room temperature under a magnetic field change 0-1 T. Improved refrigerant capacity is also a highlight of the 30% Cu material when compared to similar Ni2MnGa-based alloys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا