Do you want to publish a course? Click here

The impact of radio feedback from active galactic nuclei in cosmological simulations: Formation of disk galaxies

100   0   0.0 ( 0 )
 Added by Takashi Okamoto
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present a new implementation of feedback due to active galactic nuclei (AGN) in cosmological simulations of galaxy formation. We assume that a fraction of jet energy, which is generated by an AGN, is transferred to the surrounding gas as thermal energy. Combining a theoretical model of mass accretion onto black holes with a multiphase description of star-forming gas, we self-consistently follow evolution of both galaxies and their central black holes. The novelty in our model is that we consider two distinct accretion modes: standard radiatively efficient thin accretion disks and radiatively inefficient accretion flows which we will generically refer to as RIAFs; motivated by theoretical models for jet production in accretion disks, we assume that only the RIAF is responsible for the AGN feedback. We find that, after an initial episode of bursting star formation, the accretion rate onto the central black hole drops so that the accretion disk switches to a RIAF structure. At this point, the feedback from the AGN becomes efficient and slightly suppresses star formation in the galactic disk and almost completely halts star formation in the bulge. As a result, the nucleus becomes a stochastically fuelled low-luminosity AGN (Seyfert galaxy) with recurrent short-lived episodes of activity after the star bursts. Our model predicts several properties of the low-luminosity AGN including the bolometric luminosity, jet powers, the effect on kpc-scale of the radio jet and the AGN lifetime, which are in broad agreement with observations of Seyfert galaxies and their radio activity. We also find that the mass ratios between the central black hole and the the host spheroid at z = 0 are ~10^{-3} regardless of the strength of either supernova feedback or AGN feedback. (abridged)



rate research

Read More

We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions; entropy profiles outside the core; and the X-ray luminosity-mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative cooling; supernova and AGN feedback largely serve as regulation mechanisms, moving heated gas out of galaxies and away from cluster cores. However, our simulations fail to address a number of serious issues; for example, they are incapable of reproducing the shape and diversity of the observed entropy profiles within the core region. We also show that the stellar and black hole masses are sensitive to numerical resolution, particularly the gravitational softening length; a smaller value leads to more efficient black hole growth at early times and a smaller central galaxy.
282 - C. M. Booth , Joop Schaye 2009
(Abridged) We present a method that tracks the growth of supermassive black holes (BHs) and the feedback from AGN in cosmological simulations. Our model is a substantially modified version of the one by Springel et al. (2005). Because cosmological simulations lack both the resolution and the physics to model the multiphase interstellar medium, they tend to strongly underestimate the Bondi-Hoyle accretion rate. To allow low-mass BHs to grow, it is therefore necessary to increase the predicted Bondi-Hoyle rates in dense gas by large, ad-hoc factors. We explore the physical regimes where the use of such factors is reasonable, and through this introduce a new prescription for gas accretion. Feedback from AGN is modeled by coupling a fraction of the rest-mass energy of the accreted gas thermally into the surrounding medium. We describe the implementation as well as the limitations of the model and motivate all the changes relative to previous work. We investigate the robustness of the predictions for the cosmic star formation history, the redshift zero cosmic BH density, BH scaling relations, and galaxy specific star formation rates. We find that the freedom introduced by the need to increase the predicted accretion rates, the standard procedure in the literature, is the most significant source of uncertainty. Our simulations demonstrate that supermassive BHs are able to regulate their growth by releasing a fixed amount of energy for a given halo mass, independent of the assumed efficiency of AGN feedback, which sets the normalization of the BH scaling relations. Regardless of whether BH seeds are initially placed above or below the BH scaling relations they grow onto the same relations. AGN feedback efficiently suppresses star formation in high-mass galaxies.
The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (AGN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
223 - J. F. Radcliffe 2021
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this class is known as radio-loud. A substantial fraction, the so-called radio-quiet AGN population, displays intermediate or weak radio emission. However, an appreciable fraction of strong X-rays emitting AGN are characterized by the absence of radio emission, down to an upper limit of about $10^{-7}$ times the luminosity of the most powerful radio-loud AGN. We wish to address the nature of these - seemingly radio-silent - X-ray-luminous AGN and their host galaxies: is there any radio emission, and if so, where does it originate? Focusing on the GOODS-N field, we examine the nature of these objects employing stacking techniques on ultra-deep radio data obtained with the JVLA. We combine these radio data with Spitzer far-infrared data. We establish the absence, or totally insignificant contribution of jet-driven radio-emission in roughly half of the otherwise normal population of X-ray luminous AGN, which appear to reside in normal star-forming galaxies. We conclude that AGN- or jet-driven radio emission is simply a mechanism that may be at work or may be dormant in galaxies with actively accreting black holes. The latter can be classified as radio-silent AGN.
Basing our analysis on ROGUE I, a catalog of over 32,000 radio sources associated with optical galaxies, we provide two diagnostics to select the galaxies where the radio emission is due to an active galactic nucleus (AGN). Each of these diagnostics can be applied independently. The first one, dubbed MIRAD, compares the flux $F_{W3}$ in the $W3$ mid-infrared band of the WISE telescope, with the radio flux at 1.4 GHz, $Frad$. MIRAD requires no optical spectra. The second diagnostic, dubbed DLM, relates the 4000 AA break strength, $D_{rm n}(4000)$, with the radio luminosity per unit stellar mass. The DLM diagram has already been used in the past, but not as standalone. For these two diagrams, we propose simple, empirical dividing lines that result in the same classification for the objects in common. These lines correctly classify as radio-AGN 99.5 percent of the extended radio sources in the ROGUE~I catalog, and as star-forming (SF) galaxies 98--99 percent of the galaxies identified as such by their emission line ratios. Both diagrams clearly show that radio AGNs are preferentially found among elliptical galaxies and among galaxies hosting the most massive black holes. Most of the radio sources classified as radio-AGNs in the MIRAD or DLM diagrams are either optically weak AGNs or retired galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا