No Arabic abstract
We report the detection of five Jovian mass planets orbiting high metallicity stars. Four of these stars were first observed as part of the N2K program and exhibited low RMS velocity scatter after three consecutive observations. However, follow-up observations over the last three years now reveal the presence of longer period planets with orbital periods ranging from 21 days to a few years. HD 11506 is a G0V star with a planet of msini = 4.74 mjup in a 3.85 year orbit. HD 17156 is a G0V star with a 3.12 mjup planet in a 21.2 day orbit. The eccentricity of this orbit is 0.67, one of the highest known for a planet with a relatively short period. The orbital period for this planet places it in a region of parameter space where relatively few planets have been detected. HD 125612 is a G3V star with a planet of msini = 3.5 mjup in a 1.4 year orbit. HD 170469 is a G5IV star with a planet of msini = 0.67 mjup in a 3.13 year orbit. HD 231701 is an F8V star with planet of 1.08 mjup in a 142 day orbit. All of these stars have supersolar metallicity. Three of the five stars were observed photometrically but showed no evidence of brightness variability. A transit search conducted for HD 17156 was negative but covered only 25% of the search space and so is not conclusive.
Recent imaging campaigns indicate the likely existence of massive planets (~ 1-10 MJ) on ~1000 year orbits about a few percent of stars. Such objects are not easily explained in most current planet formation models. In this Letter we use ensembles of 100 N-body simulations to evaluate the potential for planet scattering during relaxation of dynamically active systems to explain the population of giant planets with projected separations up to a few 100 AU. We find that such a mechanism could indeed be at play, and that statistical samples of long period planets could place interesting constraints on early stage planet formation scenarios. Results from direct imaging and microlensing surveys are complementary probes of this dynamical relaxation process.
Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly-discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 MJup) orbiting stars monitored as part of the N2K program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously-unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly-discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly-discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.
When reporting the results of clinical studies, some researchers may choose the five-number summary (including the sample median, the first and third quartiles, and the minimum and maximum values) rather than the sample mean and standard deviation, particularly for skewed data. For these studies, when included in a meta-analysis, it is often desired to convert the five-number summary back to the sample mean and standard deviation. For this purpose, several methods have been proposed in the recent literature and they are increasingly used nowadays. In this paper, we propose to further advance the literature by developing a smoothly weighted estimator for the sample standard deviation that fully utilizes the sample size information. For ease of implementation, we also derive an approximation formula for the optimal weight, as well as a shortcut formula for the sample standard deviation. Numerical results show that our new estimator provides a more accurate estimate for normal data and also performs favorably for non-normal data. Together with the optimal sample mean estimator in Luo et al., our new methods have dramatically improved the existing methods for data transformation, and they are capable to serve as rules of thumb in meta-analysis for studies reported with the five-number summary. Finally for practical use, an Excel spreadsheet and an online calculator are also provided for implementing our optimal estimators.
We report 18 years of Doppler shift measurements of a nearby star, 55 Cancri, that exhibit strong evidence for five orbiting planets. The four previously reported planets are strongly confirmed here. A fifth planet is presented, with an apparent orbital period of 260 days, placing it 0.78 AU from the star in the large empty zone between two other planets. The velocity wobble amplitude of 4.9 ms implies a minimum planet mass msini = 45.7 mearthe. The orbital eccentricity is consistent with a circular orbit, but modest eccentricity solutions give similar chisq fits. All five planets reside in low eccentricity orbits, four having eccentricities under 0.1. The outermost planet orbits 5.8 AU from the star and has a minimum mass, msini = 3.8 mjupe, making it more massive than the inner four planets combined. Its orbital distance is the largest for an exoplanet with a well defined orbit. The innermost planet has a semi-major axis of only 0.038 AU and has a minimum mass, msinie, of only 10.8 mearthe, one of the lowest mass exoplanets known. The five known planets within 6 AU define a {em minimum mass protoplanetary nebula} to compare with the classical minimum mass solar nebula. Numerical N-body simulations show this system of five planets to be dynamically stable and show that the planets with periods of 14.65 and 44.3 d are not in a mean-motion resonance. Millimagnitude photometry during 11 years reveals no brightness variations at any of the radial velocity periods, providing support for their interpretation as planetary.
We re-examine the statistical confirmation of small long-period Kepler planet candidates in light of recent improvements in our understanding of the occurrence of systematic false alarms in this regime. Using the final Data Release 25 (DR25) Kepler planet candidate catalog statistics, we find that the previously confirmed single planet system Kepler-452b no longer achieves a 99% confidence in the planetary hypothesis and is not considered statistically validated in agreement with the finding of Mullally et al. (2018). For multiple planet systems, we find that the planet prior enhancement for belonging to a multiple planet system is suppressed relative to previous Kepler catalogs, and we identify the multi-planet system member, Kepler-186f, no longer achieves a 99% confidence in the planetary hypothesis. Because of the numerous confounding factors in the data analysis process that leads to the detection and characterization of a signal, it is difficult to determine whether any one planetary candidate achieves a strict criterion for confirmation relative to systematic false alarms. For instance, when taking into account a simplified model of processing variations, the additional single planet systems Kepler-443b, Kepler-441b, Kepler-1633b, Kepler-1178b, and Kepler-1653b have a non-negligible probability of falling below a 99% confidence in the planetary hypothesis. The systematic false alarm hypothesis must be taken into account when employing statistical validation techniques in order to confirm planet candidates that approach the detection threshold of a survey. We encourage those performing transit searches of K2, TESS, and other similar data sets to quantify their systematic false alarms rates. Alternatively, independent photometric detection of the transit signal or radial velocity measurements can eliminate the false alarm hypothesis.