Do you want to publish a course? Click here

Disentanglement in a quantum critical environment

135   0   0.0 ( 0 )
 Added by Zhe Sun
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamical process of disentanglement of two qubits and two qutrits coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. We use the concurrence and negativity to quantify entanglement of two qubits and two qutrits, respectively. Explicit connections between the concurrence (negativity) and the decoherence factors are given for two initial states, the pure maximally entangled state and the mixed Werner state. We find that the concurrence and negativity decay exponentially with fourth power of time in the vicinity of critical point of the environmental system.



rate research

Read More

We show that the minimal rate of noise needed to catalytically erase the entanglement in a bipartite quantum state is given by the regularized relative entropy of entanglement. This offers a solution to the central open question raised in [Groisman, PRA 72, 032317 (2005)] and complements their main result that the minimal rate of noise needed to erase all correlations is given by the quantum mutual information. We extend our discussion to the tripartite setting where we show that an asymptotic rate of noise given by the regularized relative entropy of recovery is sufficient to catalytically transform the state to a locally recoverable version of the state.
177 - Wei Wu , Jun-Hong An 2021
Quantum metrology pursues high-precision measurements to physical quantities by using quantum resources. However, the decoherence generally hinders its performance. Previous work found that the metrology error tends to divergent in the long-encoding-time regime due to the Born-Markovian approximate decoherence, which is called no-go theorem of noisy quantum metrology. We here propose a Gaussian quantum metrology scheme using bimodal quantized optical fields as quantum probe. It achieves the precision of sub-Heisenberg limit in the ideal case. However, the Markovian decoherence causes the metrological error contributed from the center-of-mass mode of the probe to be divergent. A mechanism to remove this ostensible no-go theorem is found in the non-Markovian dynamics. Our result gives an efficient way to realize high-precision quantum metrology in practical continuous-variable systems.
We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment. We prove that in the presence of noise causing false excitation, such as thermal noise, the quantum Fisher information of arbitrary quantum states for the separation of the objects, which quantifies the resolution, always converges to zero as the separation goes to zero. Noisy cases contrast with a noiseless case where it has been shown to be nonzero for a small distance in various circumstances, revealing the superresolution. In addition, we show that false excitation on an arbitrary measurement, such as dark counts, also makes the classical Fisher information of the measurement approach to zero as the separation goes to zero. Finally, a practically relevant situation resolving two identical thermal sources, is quantitatively investigated by using the quantum and classical Fisher information of finite spatial mode multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy system.
228 - Shusen Liu , Xin Wang , Li Zhou 2017
This paper describes a quantum programming environment, named $Q|SIrangle$. It is a platform embedded in the .Net language that supports quantum programming using a quantum extension of the $mathbf{while}$-language. The framework of the platform includes a compiler of the quantum $mathbf{while}$-language and a suite of tools for simulating quantum computation, optimizing quantum circuits, and analyzing and verifying quantum programs. Throughout the paper, using $Q|SIrangle$ to simulate quantum behaviors on classical platforms with a combination of components is demonstrated. The scalable framework allows the user to program customized functions on the platform. The compiler works as the core of $Q|SIrangle$ bridging the gap from quantum hardware to quantum software. The built-in decomposition algorithms enable the universal quantum computation on the present quantum hardware.
159 - R. Tsekov 2017
The Klein-Kramers equation, governing the Brownian motion of a classical particle in quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction the corresponding Smoluchowski equation is obtained. Introducing the Bohm quantum potential, this Smoluchowski equation is extended to describe the Brownian motion of a quantum particle in quantum environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا