No Arabic abstract
Quantum metrology pursues high-precision measurements to physical quantities by using quantum resources. However, the decoherence generally hinders its performance. Previous work found that the metrology error tends to divergent in the long-encoding-time regime due to the Born-Markovian approximate decoherence, which is called no-go theorem of noisy quantum metrology. We here propose a Gaussian quantum metrology scheme using bimodal quantized optical fields as quantum probe. It achieves the precision of sub-Heisenberg limit in the ideal case. However, the Markovian decoherence causes the metrological error contributed from the center-of-mass mode of the probe to be divergent. A mechanism to remove this ostensible no-go theorem is found in the non-Markovian dynamics. Our result gives an efficient way to realize high-precision quantum metrology in practical continuous-variable systems.
Conventional strategies of quantum metrology are built upon POVMs, thereby possessing several general features, including the demolition of the state to be measured, the need of performing a number of measurements, and the degradation of performance under decoherence and dissipation. Here, we propose an innovative measurement scheme, called dissipative adiabatic measurements (DAMs), based on which, we further develop an approach to estimation of parameters characterizing dissipative processes. Unlike a POVM, whose outcome is one of the eigenvalues of an observable, a DAM yields the expectation value of the observable as its outcome, without collapsing the state to be measured. By virtue of the very nature of DAMs, our approach is capable of solving the estimation problem in a state-protective fashion with only $M$ measurements, where $M$ is the number of parameters to be estimated. More importantly, contrary to the common wisdom, it embraces decoherence and dissipation as beneficial effects and offers a Heisenberg-like scaling of precision, thus outperforming conventional strategies. Our DAM-based approach is direct, efficient, and expected to be immensely useful in the context of dissipative quantum information processing.
We discuss the quantum annealing of the fully-connected ferromagnetic $ p $-spin model in a dissipative environment at low temperature. This model, in the large $ p $ limit, encodes in its ground state the solution to the Grovers problem of searching in unsorted databases. In the framework of the quantum circuit model, a quantum algorithm is known for this task, providing a quadratic speed-up with respect to its best classical counterpart. This improvement is not recovered in adiabatic quantum computation for an isolated quantum processor. We analyze the same problem in the presence of a low-temperature reservoir, using a Markovian quantum master equation in Lindblad form, and we show that a thermal enhancement is achieved in the presence of a zero temperature environment moderately coupled to the quantum annealer.
One dimensional topological insulators are characterized by edge states with exponentially small energies. According to one generalization of topological phases to non-Hermitian systems, a finite system in a non-trivial topological phase displays surface states with exponentially long life times. In this work we explore the possibility of exploiting such non-Hermitian topological phases to enhance the quantum coherence of a fiducial qubit embedded in a dissipative environment. We first show that a network of qubits interacting with lossy cavities can be represented, in a suitable super-one-particle sector, by a non-Hermitian Hamiltonian of the desired form. We then study, both analytically and numerically, one-dimensional geometries with up to three sites per unit cell, and up to a topological winding number $W=2$. For finite-size systems the number of edge modes is a complicated function of $W$ and the system size $N$. However we find that there are precisely $W$ modes localized at one end of the chain. In such topological phases the quibts coherence lifetime is exponentially large in the system size. We verify that, for $W>1$, at large times, the Lindbladian evolution is approximately a non-trivial unitary. For $W=2$ this results in Rabi-like oscillations of the qubits coherence measure.
We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial non-degenerate groundstate evolves into a highly entangled state, is achieved by adiabatically driving the system from a non-degenerate regime to a degenerate one. Inversely, the beam recombination, in which the output state after interrogation becomes gradually disentangled, is accomplished by adiabatically driving the system from the degenerate regime to the non-degenerate one. The phase shift, which is accumulated in the interrogation process, can then be easily inferred via population measurement. We apply our scheme to Bose condensed atoms and trapped ions, and find that Heisenberg-limited precision scalings can be approached. Our proposed scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.
We investigate two coupled nonlinear cavities that are coherently driven in a dissipative environment. We perform semiclassical, numerical and analytical quantum studies of this dimer model when both cavities are symmetrically driven. In the semiclassical analysis, we find steady-state solutions with different photon occupations in two cavities. Such states can be considered analogs of the closed system double well symmetry breaking states. We analyze the occurrence and properties of these localized states in the system parameter space and examine how the symmetry breaking states, in form of a bistable pair, are associated to the single cavity bistable behavior. In a full quantum calculation of the master equation dynamics that includes quantum fluctuations, the symmetry breaking states and bistability disappear due to the quantum fluctuations. In quantum trajectory picture, we observe enhanced quantum jumps and switching which indicate the presence of the underlying semiclassical symmetry breaking states. Finally, we present a set of analytical solutions for the steady state correlation functions using the complex P-representation and discuss its regime of validity.