Do you want to publish a course? Click here

Magnetic Fingerprints of sub-100 nm Fe Nanodots

376   0   0.0 ( 0 )
 Added by Kai Liu
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic fingerprints of 1 billion Fe nanodots as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method. As the nanodot size increases from 52 nm to 67 nm, the FORC diagrams reveal striking differences, despite only subtle changes in their major hysteresis loops. The 52 nm nanodots exhibit single domain behavior and the coercivity distribution extracted from the FORC distribution agrees well with a calculation based on the measured nanodot size distribution. The 58 and 67 nm nanodots exhibit vortex states, where the nucleation and annihilation of the vortices are manifested as butterfly-like features in the FORC distribution and confirmed by micromagnetic simulations. Furthermore, the FORC method gives quantitative measures of the magnetic phase fractions, and vortex nucleation and annihilation fields.

rate research

Read More

Magnetic skyrmions are nanometric spin textures of outstanding potential for spintronic applications due to unique features governed by their non-trivial topology. It is well known that skyrmions of definite chirality are stabilized by the Dzyaloshinskii-Moriya exchange interaction (DMI) in bulk non-centrosimmetric materials or ultrathin films with strong spin-orbit coupling in the interface. In this work, we report on the detection of magnetic hedgehog-skyrmions at room temperature in confined systems with neither DMI nor perpendicular magnetic anisotropy. We show that soft magnetic (permalloy) nanodots are able to host non- chiral hedgehog skyrmions that can be further stabilized by the magnetic field arising from the Magnetic Force Microscopy probe. Analytical calculations and micromagnetic simulations confirmed the existence of metastable Neel skyrmions in permalloy nanodots even without external stimuli in a certain size range. Our work implies the existence of a new degree of freedom to create and manipulate skyrmions in soft nanodots. The stabilization of skyrmions in soft magnetic materials opens a possibility to study the skymion magnetization dynamics otherwise limited due to the large damping constant coming from the high spin-orbit coupling in materials with high magnetic anisotropy.
Magnetic skyrmions are chiral spin structures that have recently been observed at room temperature (RT) in multilayer thin films. Their topological stability should enable high scalability in confined geometries - a sought-after attribute for device applications. While umpteen theoretical predictions have been made regarding the phenomenology of sub-100 nm skyrmions confined in dots, in practice their formation in the absence of an external magnetic field and evolution with confinement remain to be established. Here we demonstrate the confinement-induced stabilization of sub-100 nm RT skyrmions at zero field (ZF) in Ir/Fe(x)/Co(y)/Pt nanodots over a wide range of magnetic and geometric parameters. The ZF skyrmion size can be as small as ~50 nm, and varies by a factor of 4 with dot size and magnetic parameters. Crucially, skyrmions with varying thermodynamic stability exhibit markedly different confinement phenomenologies. These results establish a comprehensive foundation for skyrmion phenomenology in nanostructures, and provide immediate directions for exploiting their properties in nanoscale devices.
The recently discovered magnetization reversal driven solely by a femtosecond laser pulse has been shown to be a promising way to record information at record breaking speeds. Seeking to improve the recording density has raised intriguing fundamental question about the feasibility to combine the ultrafast temporal with sub-wavelength spatial resolution of magnetic recording. Here we report about the first experimental demonstration of sub-diffraction and sub-100 ps all-optical magnetic switching. Using computational methods we reveal the feasibility of sub-diffraction magnetic switching even for an unfocused incoming laser pulse. This effect is achieved via structuring the sample such that the laser pulse experiences a passive wavefront shaping as it couples and propagates inside the magnetic structure. Time-resolved studies with the help of photo-emission electron microscopy clearly reveal that the sub-wavelength switching with the help of the passive wave-front shaping can be pushed into sub-100 ps regime.
The smallest structures that conventional lenses are able to optically resolve are of the order of 200 nm. We introduce a new type of lens that exploits multiple scattering of light to generate a scanning nano-sized optical focus. With an experimental realization of this lens in gallium phosphide we have succeeded to image gold nanoparticles at 97 nm optical resolution. Our work is the first lens that provides a resolution in the nanometer regime at visible wavelengths.
Electron microscopy (EM) has been instrumental in our understanding of biological systems ranging from subcellular structures to complex organisms. Although EM reveals cellular morphology with nanoscale resolution, it does not provide information on the location of proteins within a cellular context. An EM-based bioimaging technology capable of localizing individual proteins and resolving protein-protein interactions with respect to cellular ultrastructure would provide important insights into the molecular biology of a cell. Here, we report on the development of luminescent nanoprobes potentially suitable for labeling biomolecules in a multicolor EM modality. In this approach, the labels are based on lanthanide-doped nanoparticles that emit light under electron excitation in a process known as cathodoluminescence (CL). Our results suggest that the optimization of nanoparticle composition, synthesis protocols and electron imaging conditions could enable high signal-to-noise localization of biomolecules with a sub-20-nm resolution, limited only by the nanoparticle size. In ensemble measurements, these luminescent labels exhibit narrow spectra of nine distinct colors that are characteristic of the corresponding rare-earth dopant type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا