Do you want to publish a course? Click here

VLBI Astrometry of AGB Variables with VERA -- A Mira Type Variable T Lepus

233   0   0.0 ( 0 )
 Added by Akiharu Nakagawa
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We conducted phase referencing VLBI observations of the Mira variable T~Lepus (T~Lep) using VERA, from 2003 to 2006. The distance to the source was determined from its annual parallax which was measured to be 3.06$pm$0.04 mas, corresponding to a distance of 327$pm$4,pc. Our observations revealed the distribution and internal kinematics of H$_2$O masers in T~Lep, and we derived a source systemic motions of 14.60$pm$0.50 mas yr$^{-1}$ and $-$35.43$pm$0.79 mas yr$^{-1}$ in right ascension and declination, respectively. We also determined a LSR velocity of $V_mathrm{LSR}^{ast} = -$27.63 km s$^{-1}$. Comparison of our result with an image recently obtained from the VLTI infrared interferometer reveals a linear scale picture of the circumstellar structure of T~Lep. Analysis of the source systemic motion in the Galacto-centric coordinate frame indicates a large peculiar motion, which is consistent with the general characteristics of AGB stars. This source makes a contribution to the calibration of the period-luminosity relation of Galactic Mira variables. From the compilation of data for nearby Mira variables found in the literature, whose distances were derived from astrometric VLBI observations, we have calibrated the Galactic Mira period-luminosity relation to a high degree of accuracy.



rate research

Read More

We present a distance measurement for the semiregular variable S Crateris (S Crt) based on its annual parallax. With the unique dual beam system of the VLBI Exploration for Radio Astrometry (VERA) telescopes, we measured the absolute proper motion of a water maser spot associated with S Crt, referred to the quasar J1147-0724 located at an angular separation of 1.23$^{circ}$. In observations spanning nearly two years, we have detected the maser spot at the LSR velocity of 34.7 km s$^{-1}$, for which we measured the annual parallax of 2.33$pm$0.13 mas corresponding to a distance of 430$^{+25}_{-23}$ pc. This measurement has an accuracy one order of magnitude better than the parallax measurements of HIPPARCOS. The angular distribution and three-dimensional velocity field of maser spots indicate a bipolar outflow with the flow axis along northeast-southwest direction. Using the distance and photospheric temperature, we estimate the stellar radius of S Crt and compare it with those of Mira variables.
We have measured an annual parallax of the Mira variable R~Ursae~Majoris (R~UMa) with the VLBI exploration for Radio Astronomy (VERA). From the monitoring VLBI observations spanning about two years, we detected H$_2$O maser spots in the LSR velocities ranges from 37 to 42 km,s$^{-1}$. We derived an annual parallax of 1.97$pm$0.05,mas, and it gives a corresponding distance of 508$pm$13,pc. The VLBI maps revealed 72 maser spots distributed in $sim$110 au area around an expected stellar position. Circumstellar kinematics of the maser spots were also revealed by subtracting a systemic motion in the Hipparcos catalog from proper motions of each maser spots derived from our VLBI observations. Infrared photometry is also conducted to measure a $K$ band apparent magnitude, and we obtained a mean magnitude of $m_K$ = 1.19$pm$0.02,mag. Using the trigonometric distance, the $m_K$ is converted to a $K$ band absolute magnitude of $M_K = -$7.34$pm$0.06,mag. This result gives a much more accurate absolute magnitude of R~UMa than previously provided. We solved a zero-point of $M_K - log P$ relation for the Galactic Mira variables and obtained a relation of $M_K = -$3.52 $log P$ + (1.09 $pm$ 0.14). Other long period variables including red supergiants, whose distances were determined from astrometric VLBI, were also compiled to explore the different sequences of $M_K - log P$ relation.
We present the first astrometry catalog from the Japanese VLBI (very long baseline interferometer) project VERA (VLBI Exploration of Radio Astrometry). We have compiled all the astrometry results from VERA, providing accurate trigonometric annual parallax and proper motion measurements. In total, 99 maser sources are listed in the VERA catalog. Among them, 21 maser sources are newly reported while the rest of 78 sources are referred to previously published results or those in preparation for forthcoming papers. The accuracy in the VERA astrometry are revisited and compared with those from the other VLBI astrometry projects such as BeSSeL (The Bar and Spiral Structure Legacy) Survey and GOBELINS (the Goulds Belt Distances Survey) with the VLBA (Very Long Baseline Array). We have confirmed that most of the astrometry results are consistent with each other, and the largest error sources are due to source structure of the maser features and their rapid variation, along with the systematic calibration errors and different analysis methods. Combined with the BeSSeL results, we estimate the up-to-date fundamental Galactic parameter of $R_{0}=7.92pm0.16_{rm{stat.}}pm0.3_{rm{sys.}}$~kpc and $Omega_{odot}=30.17pm0.27_{rm{stat.}}pm0.3_{rm{sys.}}$~km~s$^{-1}$~kpc$^{-1}$, where $R_{0}$ and $Omega_{odot}$ are the distance from the Sun to the Galactic center and the Suns angular velocity of the Galactic circular rotation, respectively.
We discuss the unique opportunities for maser astrometry with the inclusion of the Square Kilometre Array (SKA) in Very Long Baseline Interferometry (VLBI) networks. The first phase of the SKA will enable observations of hydroxyl and methanol masers, positioning the latter to an accuracy of 5 microarcseconds, and the second phase may allow water maser observations. These observations will provide trigonometric distances with errors as small as 1%. The unrivalled sensitivity of the SKA will enable large-scale surveys and, through joint operations, will turn any VLBI network into a fast astrometry device. Both evolved stars and high mass star formation regions will be accessible throughout the (Southern) Milky Way, completing our understanding of the content, dynamics and history of our Galaxy. Maser velocities and proper motions will be measurable in the Local Group of galaxies and beyond, providing new insights into their kinematics and evolution.
We conducted multi-epoch VLBA phase reference observations of LS I +61 303 in order to study its precessing radio jet. Compared to similar observations in 2006, we find that the observed elliptical trajectory of emission at 8.4 GHz repeats after the 9-year gap. The accurate alignment of the emission patterns yields a precession period of 26.926 +- 0.005 d, which is consistent with that determined by Lomb-Scargle analysis of the radio light curve. We analytically model the projection on the sky plane of the peak position of a precessing, synchrotron-emitting jet, which traces an elliptical trajectory on the sky. Comparing the simulation with the VLBA astrometry we improve our knowledge of the geometry of the system.We measure the LS I +61 303 absolute proper motion to be -0.150 +- 0.006 mas/yr eastward and -0.264 +- 0.006 mas/yr northward. Removing Galactic rotation, this reveals a small, < 20 km/s, non-circular motion, which indicates a very low kick velocity when the black hole was formed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا