Do you want to publish a course? Click here

We investigate the dynamics of an ion sympathetically cooled by another laser-cooled ion or small ion crystal. To this end, we develop simple models of the cooling dynamics in the limit of weak Coulomb interactions. Experimentally, we create a two-ion crystal of Ca$^+$ and Al$^+$ by photo-ionization of neutral atoms produced by laser ablation. We characterize the velocity distribution of the laser-ablated atoms crossing the trap by time-resolved fluorescence spectroscopy. We observe neutral atom velocities much higher than the ones of thermally heated samples and find as a consequence long sympathethic cooling times before crystallization occurs. Our key result is a new technique for detecting the loading of an initially hot ion with energy in the eV range by monitoring the motional state of a Doppler-cooled ion already present in the trap. This technique not only detects the ion but also provides information about dynamics of the sympathetic cooling process.
Ultrathin optical fibres integrated into cold atom setups are proving to be ideal building blocks for atom-photon hybrid quantum networks. Such optical nanofibres (ONF) can be used for the demonstration of nonlinear optics and quantum interference phenomena in atomic media. Here, we report on the observation of multilevel cascaded electromagnetically induced transparency (EIT) using an optical nanofibre to interface cold $^{87}$Rb atoms through the intense evanescent fields that can be achieved at ultralow probe and coupling powers. Both the probe (at 780 nm) and the coupling (at 776 nm) beams propagate through the nanofibre. The observed multipeak transparency spectra of the probe beam could offer a method for simultaneously slowing down multiple wavelengths in an optical nanofibre or for generating ONF-guided entangled beams, showing the potential of such an atom-nanofibre system for quantum information. We also demonstrate all-optical-switching in the all fibred system using the obtained EIT effect.
Lorentz symmetry is one of the cornerstones of modern physics. However, a number of theories aiming at unifying gravity with the other fundamental interactions including string field theory suggest violation of Lorentz symmetry [1-4]. While the energy scale of such strongly Lorentz symmetry-violating physics is much higher than that currently attainable by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies [2]. Here, we carry out a systematic theoretical investigation of the sensitivity of a wide range of atomic systems to violation of local Lorentz invariance (LLI). Aim of these studies is to identify which atom shows the biggest promise to detect violation of Lorentz symmetry. We identify the Yb+ ion as an ideal system with high sensitivity as well as excellent experimental controllability. By applying quantum information inspired technology to Yb+, we expect tests of LLI violating physics in the electron-photon sector to reach levels of $10^{-23}$, five orders of magnitude more sensitive than the current best bounds [5-7]. Most importantly, the projected sensitivity of $10^{-23}$ for the Yb+ ion tests will allow for the first time to probe whether Lorentz violation is minimally suppressed at low energies for photons and electrons.
We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in EIT storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance, and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.
To date, no framework combining quantum field theory and general relativity and hence unifying all four fundamental interactions, exists. Violations of the Einsteins equivalence principle (EEP), being the foundation of general relativity, may hold the key to a theory of quantum gravity. The universality of free fall (UFF), which is one of the three pillars of the EEP, has been extensively tested with classical bodies. Quantum tests of the UFF, e.g. by exploiting matter wave interferometry, allow for complementary sets of test masses, orders of magnitude larger test mass coherence lengths and investigation of spin-gravity coupling. We review our recent work towards highly sensitive matter wave tests of the UFF on ground. In this scope, the first quantum test of the UFF utilizing two different chemical elements, Rb-87 and K-39, yielding an Eotvos ratio $eta_{,text{Rb,K}}=(0.3pm 5.4)times 10^{-7}$ has been performed. We assess systematic effects currently limiting the measurement at a level of parts in $10^8$ and finally present our strategies to improve the current state-of-the-art with a test comparing the free fall of rubidium and ytterbium in a very long baseline atom interferometry setup. Here, a 10 m baseline combined with a precise control of systematic effects will enable a determination of the Eotvos ratio at a level of parts in $10^{13}$ and beyond, thus reaching and overcoming the performance limit of the best classical tests.
We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $lvert 5s^{2} , ^1 textrm{S}_0 rangle ,-, lvert 5s5p , ^3 textrm{P}_1 rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynamics of the phase dispersion slope is experimentally investigated and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.
We employ doubly-resonant two-photon excitation into the 74S Rydberg state to spectroscopically measure the dynamic scalar polarizability, alpha 0, and tensor polarizability, alpha 2, of rubidium 5P3/2. To reach the necessary high intensities, we employ a cavity-generated 1064 nm optical-lattice light field, allowing us to obtain intensities near 2x10^11 W/m^2. In the evaluation of the data we use a self-referencing method that renders the polarizability measurement largely free from the intensity calibration of the laser light field. We obtain experimental values alpha 0 =-1149 (pm 2.5 percent) and alpha 2 = 563 (pm 4.2 percent), in atomic units. Methods and results are supported by simulations.
To advance quantum information science a constant pursuit is the search for physical systems that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of Coulomb interactions between ions or dipolar interactions between Rydberg atoms. While these interactions allow fast gates, atoms subject to these interactions must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring significant wavefunction overlap, can alleviate these detrimental effects yet present a new challenge: To distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, via a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. While ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and detected entanglement with macroscopic observables, we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements; this new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially-separated atoms. The local entangling operation is achieved via ultracold spin-exchange interactions, and quantum tunneling is used to combine and separate atoms. Our toolset provides a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over 157~$mu$m range along the trap axis at accuracies of better than 6~nm.
We have measured the hyperfine splitting of the $7P_{1/2}$ state at the 100 ppm level in Fr isotopes ($^{206g,206m, 207, 209, 213, 221}$Fr) near the closed neutron shell ($N$ = 126 in $^{213}$Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the $7S_{1/2}$ splittings, reveal the spatial distribution of the nuclear magnetization, i.e. the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes ($^{207-213}$Fr). Also, we find near-constant proton anomalies for several even-$ N$ isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity non-conservation studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا