Do you want to publish a course? Click here

Hyperfine anomalies in Fr: boundaries of the spherical single particle model

130   0   0.0 ( 0 )
 Added by Jiehang Zhang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the hyperfine splitting of the $7P_{1/2}$ state at the 100 ppm level in Fr isotopes ($^{206g,206m, 207, 209, 213, 221}$Fr) near the closed neutron shell ($N$ = 126 in $^{213}$Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the $7S_{1/2}$ splittings, reveal the spatial distribution of the nuclear magnetization, i.e. the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes ($^{207-213}$Fr). Also, we find near-constant proton anomalies for several even-$ N$ isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity non-conservation studies.



rate research

Read More

We have performed high-precision calculations of the hyperfine structure for n 2S_1/2 and n 2P_1/2 states of the alkali-metal atoms Rb, Cs, and Fr across principal quantum number n, and studied the trend in the size of the correlations. Our calculations were performed in the all-orders correlation potential method. We demonstrate that the relative correlation corrections fall off quickly with n and tend towards constant and non-zero values for highly-excited states. This trend is supported by experiment, and we utilize the smooth dependence on n to make high-accuracy predictions of the hyperfine constants, with uncertainties to within 0.1% for most states of Rb and Cs.
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms ^{87}Rb, ^{133}Cs, ^{211}Fr and alkali-metal-like ions ^{135}Ba^+, ^{225}Ra^+, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
154 - A. Perez Galvan 2008
We observe a hyperfine anomaly in the measurement of the hyperfine splitting of the 6S_{1/2} excited level in rubidium. We perform two step spectroscopy using the 5S_{1/2}->5P_{1/2}->6S_{1/2} excitation sequence. We measure the splitting of the 6S1/2 level and obtain for the magnetic dipole constants of ^{85}Rb and ^{87}Rb A = 239.18(4) MHz and A=807.66(8) MHz, respectively. The hyperfine anomaly difference of_{87}delta_{85}=-0.0036(2) comes from the Bohr Weisskopf effect: a correction to the point interaction between the finite nuclear magnetization and the electrons, and agrees with that obtained in the 5S_{1/2} ground state.
A new value for the hyperfine magnetic field of copper impurities in iron is obtained by combining resonance frequencies from experiments involving {beta}-NMR on oriented nuclei on 59-Cu, 69-Cu, and 71-Cu with magnetic moment values from collinear laser spectroscopy measurements on these isotopes. The resulting value, i.e., Bhf(CuFe) = -21.794(10) T, is in agreement with the value adopted until now but is an order of magnitude more precise. It is consistent with predictions from ab initio calculations. Comparing the hyperfine field values obtained for the individual isotopes, the hyperfine anomalies in Fe were determined to be 59{Delta}69=0.15(9)% and 71{Delta}69=0.07(11)%.
127 - D.L. Moskovkin , V.M. Shabaev , 2007
The fully relativistic theory of the Zeeman splitting of the $(1s)^2 2s$ hyperfine-structure levels in lithiumlike ions with $Z=6 - 32$ is considered for the magnetic field magnitude in the range from 1 to 10 T. The second-order corrections to the Breit -- Rabi formula are calculated and discussed including the one-electron contributions as well as the interelectronic-interaction effects of order 1/Z. The 1/Z corrections are evaluated within a rigorous QED approach. These corrections are combined with other interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections to obtain high-precision theoretical values for the Zeeman splitting in Li-like ions with nonzero nuclear spin. The results can be used for a precise determination of nuclear magnetic moments from $g$-factor experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا