Do you want to publish a course? Click here

Current NLP models are predominantly trained through a two-stage pre-train then fine-tune'' pipeline. Prior work has shown that inserting an intermediate pre-training stage, using heuristic masking policies for masked language modeling (MLM), can sig nificantly improve final performance. However, it is still unclear (1) in what cases such intermediate pre-training is helpful, (2) whether hand-crafted heuristic objectives are optimal for a given task, and (3) whether a masking policy designed for one task is generalizable beyond that task. In this paper, we perform a large-scale empirical study to investigate the effect of various masking policies in intermediate pre-training with nine selected tasks across three categories. Crucially, we introduce methods to automate the discovery of optimal masking policies via direct supervision or meta-learning. We conclude that the success of intermediate pre-training is dependent on appropriate pre-train corpus, selection of output format (i.e., masked spans or full sentence), and clear understanding of the role that MLM plays for the downstream task. In addition, we find our learned masking policies outperform the heuristic of masking named entities on TriviaQA, and policies learned from one task can positively transfer to other tasks in certain cases, inviting future research in this direction.
Representations from large pretrained models such as BERT encode a range of features into monolithic vectors, affording strong predictive accuracy across a range of downstream tasks. In this paper we explore whether it is possible to learn disentangl ed representations by identifying existing subnetworks within pretrained models that encode distinct, complementary aspects. Concretely, we learn binary masks over transformer weights or hidden units to uncover subsets of features that correlate with a specific factor of variation; this eliminates the need to train a disentangled model from scratch for a particular task. We evaluate this method with respect to its ability to disentangle representations of sentiment from genre in movie reviews, toxicity from dialect in Tweets, and syntax from semantics. By combining masking with magnitude pruning we find that we can identify sparse subnetworks within BERT that strongly encode particular aspects (e.g., semantics) while only weakly encoding others (e.g., syntax). Moreover, despite only learning masks, disentanglement-via-masking performs as well as --- and often better than ---previously proposed methods based on variational autoencoders and adversarial training.
We present a simple method for extending transformers to source-side trees. We define a number of masks that limit self-attention based on relationships among tree nodes, and we allow each attention head to learn which mask or masks to use. On transl ation from English to various low-resource languages, and translation in both directions between English and German, our method always improves over simple linearization of the source-side parse tree and almost always improves over a sequence-to-sequence baseline, by up to +2.1 BLEU.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا