Do you want to publish a course? Click here

Temporal language grounding (TLG) aims to localize a video segment in an untrimmed video based on a natural language description. To alleviate the expensive cost of manual annotations for temporal boundary labels,we are dedicated to the weakly superv ised setting, where only video-level descriptions are provided for training. Most of the existing weakly supervised methods generate a candidate segment set and learn cross-modal alignment through a MIL-based framework. However, the temporal structure of the video as well as the complicated semantics in the sentence are lost during the learning. In this work, we propose a novel candidate-free framework: Fine-grained Semantic Alignment Network (FSAN), for weakly supervised TLG. Instead of view the sentence and candidate moments as a whole, FSAN learns token-by-clip cross-modal semantic alignment by an iterative cross-modal interaction module, generates a fine-grained cross-modal semantic alignment map, and performs grounding directly on top of the map. Extensive experiments are conducted on two widely-used benchmarks: ActivityNet-Captions, and DiDeMo, where our FSAN achieves state-of-the-art performance.
Temporal language grounding in videos aims to localize the temporal span relevant to the given query sentence. Previous methods treat it either as a boundary regression task or a span extraction task. This paper will formulate temporal language groun ding into video reading comprehension and propose a Relation-aware Network (RaNet) to address it. This framework aims to select a video moment choice from the predefined answer set with the aid of coarse-and-fine choice-query interaction and choice-choice relation construction. A choice-query interactor is proposed to match the visual and textual information simultaneously in sentence-moment and token-moment levels, leading to a coarse-and-fine cross-modal interaction. Moreover, a novel multi-choice relation constructor is introduced by leveraging graph convolution to capture the dependencies among video moment choices for the best choice selection. Extensive experiments on ActivityNet-Captions, TACoS, and Charades-STA demonstrate the effectiveness of our solution. Codes will be available at https://github.com/Huntersxsx/RaNet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا