Do you want to publish a course? Click here

Offensive language detection (OLD) has received increasing attention due to its societal impact. Recent work shows that bidirectional transformer based methods obtain impressive performance on OLD. However, such methods usually rely on large-scale we ll-labeled OLD datasets for model training. To address the issue of data/label scarcity in OLD, in this paper, we propose a simple yet effective domain adaptation approach to train bidirectional transformers. Our approach introduces domain adaptation (DA) training procedures to ALBERT, such that it can effectively exploit auxiliary data from source domains to improve the OLD performance in a target domain. Experimental results on benchmark datasets show that our approach, ALBERT (DA), obtains the state-of-the-art performance in most cases. Particularly, our approach significantly benefits underrepresented and under-performing classes, with a significant improvement over ALBERT.
Current abusive language detection systems have demonstrated unintended bias towards sensitive features such as nationality or gender. This is a crucial issue, which may harm minorities and underrepresented groups if such systems were integrated in r eal-world applications. In this paper, we create ad hoc tests through the CheckList tool (Ribeiro et al., 2020) to detect biases within abusive language classifiers for English. We compare the behaviour of two BERT-based models, one trained on a generic hate speech dataset and the other on a dataset for misogyny detection. Our evaluation shows that, although BERT-based classifiers achieve high accuracy levels on a variety of natural language processing tasks, they perform very poorly as regards fairness and bias, in particular on samples involving implicit stereotypes, expressions of hate towards minorities and protected attributes such as race or sexual orientation. We release both the notebooks implemented to extend the Fairness tests and the synthetic datasets usable to evaluate systems bias independently of CheckList.
Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training dataset s for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
We introduce HateBERT, a re-trained BERT model for abusive language detection in English. The model was trained on RAL-E, a large-scale dataset of Reddit comments in English from communities banned for being offensive, abusive, or hateful that we hav e curated and made available to the public. We present the results of a detailed comparison between a general pre-trained language model and the retrained version on three English datasets for offensive, abusive language and hate speech detection tasks. In all datasets, HateBERT outperforms the corresponding general BERT model. We also discuss a battery of experiments comparing the portability of the fine-tuned models across the datasets, suggesting that portability is affected by compatibility of the annotated phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا