Do you want to publish a course? Click here

Compliments and concerns in reviews are valuable for understanding users' shopping interests and their opinions with respect to specific aspects of certain items. Existing review-based recommenders favor large and complex language encoders that can o nly learn latent and uninterpretable text representations. They lack explicit user-attention and item-property modeling, which however could provide valuable information beyond the ability to recommend items. Therefore, we propose a tightly coupled two-stage approach, including an Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware Rating Estimator (APRE). Unsupervised ASPE mines Aspect-Sentiment pairs (AS-pairs) and APRE predicts ratings using AS-pairs as concrete aspect-level evidences. Extensive experiments on seven real-world Amazon Review Datasets demonstrate that ASPE can effectively extract AS-pairs which enable APRE to deliver superior accuracy over the leading baselines.
This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks in a particular CL setting called domain incremental learning (DIL). Each task is from a different domain or product. The DIL setting is particula rly suited to ASC because in testing the system needs not know the task/domain to which the test data belongs. To our knowledge, this setting has not been studied before for ASC. This paper proposes a novel model called CLASSIC. The key novelty is a contrastive continual learning method that enables both knowledge transfer across tasks and knowledge distillation from old tasks to the new task, which eliminates the need for task ids in testing. Experimental results show the high effectiveness of CLASSIC.
This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks. Although some CL techniques have been proposed for document sentiment classification, we are not aware of any CL work on ASC. A CL system that in crementally learns a sequence of ASC tasks should address the following two issues: (1) transfer knowledge learned from previous tasks to the new task to help it learn a better model, and (2) maintain the performance of the models for previous tasks so that they are not forgotten. This paper proposes a novel capsule network based model called B-CL to address these issues. B-CL markedly improves the ASC performance on both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of B-CL is demonstrated through extensive experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا