Do you want to publish a course? Click here

Named Entity Recognition is an essential task in natural language processing to detect entities and classify them into predetermined categories. An entity is a meaningful word, or phrase that refers to proper nouns. Named Entities play an important r ole in different NLP tasks such as Information Extraction, Question Answering and Machine Translation. In Machine Translation, named entities often cause translation failures regardless of local context, affecting the output quality of translation. Annotating named entities is a time-consuming and expensive process especially for low-resource languages. One solution for this problem is to use word alignment methods in bilingual parallel corpora in which just one side has been annotated. The goal is to extract named entities in the target language by using the annotated corpus of the source language. In this paper, we compare the performance of two alignment methods, Grow-diag-final-and and Intersect Symmetrisation heuristics, to exploit the annotation projection of English-Brazilian Portuguese bilingual corpus to detect named entities in Brazilian Portuguese. A NER model that is trained on annotated data extracted from the alignment methods, is used to evaluate the performance of aligners. Experimental results show the Intersect Symmetrisation is able to achieve superior performance scores compared to the Grow-diag-final-and heuristic in Brazilian Portuguese.
The domain-specialised application of Named Entity Recognition (NER) is known as Biomedical NER (BioNER), which aims to identify and classify biomedical concepts that are of interest to researchers, such as genes, proteins, chemical compounds, drugs, mutations, diseases, and so on. The BioNER task is very similar to general NER but recognising Biomedical Named Entities (BNEs) is more challenging than recognising proper names from newspapers due to the characteristics of biomedical nomenclature. In order to address the challenges posed by BioNER, seven machine learning models were implemented comparing a transfer learning approach based on fine-tuned BERT with Bi-LSTM based neural models and a CRF model used as baseline. Precision, Recall and F1-score were used as performance scores evaluating the models on two well-known biomedical corpora: JNLPBA and BIOCREATIVE IV (BC-IV). Strict and partial matching were considered as evaluation criteria. The reported results show that a transfer learning approach based on fine-tuned BERT outperforms all others methods achieving the highest scores for all metrics on both corpora.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا