Do you want to publish a course? Click here

This paper presents the system we submitted to the first Lexical Complexity Prediction (LCP) Shared Task 2021. The Shared Task provides participants with a new English dataset that includes context of the target word. We participate in the single-wor d complexity prediction sub-task and focus on feature engineering. Our best system is trained on linguistic features and word embeddings (Pearson's score of 0.7942). We demonstrate, however, that a simpler feature set achieves comparable results and submit a model trained on 36 linguistic features (Pearson's score of 0.7925).
Lexical complexity prediction (LCP) conveys the anticipation of the complexity level of a token or a set of tokens in a sentence. It plays a vital role in the improvement of various NLP tasks including lexical simplification, translations, and text g eneration. However, multiple meaning of a word in multiple circumstances, grammatical complex structure, and the mutual dependency of words in a sentence make it difficult to estimate the lexical complexity. To address these challenges, SemEval-2021 Task 1 introduced a shared task focusing on LCP and this paper presents our participation in this task. We proposed a transformer-based approach with sentence pair regression. We employed two fine-tuned transformer models. Including BERT and RoBERTa to train our model and fuse their predicted score to the complexity estimation. Experimental results demonstrate that our proposed method achieved competitive performance compared to the participants' systems.
We describe the UTFPR systems submitted to the Lexical Complexity Prediction shared task of SemEval 2021. They perform complexity prediction by combining classic features, such as word frequency, n-gram frequency, word length, and number of senses, w ith BERT vectors. We test numerous feature combinations and machine learning models in our experiments and find that BERT vectors, even if not optimized for the task at hand, are a great complement to classic features. We also find that employing the principle of compositionality can potentially help in phrase complexity prediction. Our systems place 45th out of 55 for single words and 29th out of 38 for phrases.
In this paper we propose a contextual attention based model with two-stage fine-tune training using RoBERTa. First, we perform the first-stage fine-tune on corpus with RoBERTa, so that the model can learn some prior domain knowledge. Then we get the contextual embedding of context words based on the token-level embedding with the fine-tuned model. And we use Kfold cross-validation to get K models and ensemble them to get the final result. Finally, we attain the 2nd place in the final evaluation phase of sub-task 2 with pearson correlation of 0.8575.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا