Do you want to publish a course? Click here

Simultaneous machine translation (SiMT) generates translation before reading the entire source sentence and hence it has to trade off between translation quality and latency. To fulfill the requirements of different translation quality and latency in practical applications, the previous methods usually need to train multiple SiMT models for different latency levels, resulting in large computational costs. In this paper, we propose a universal SiMT model with Mixture-of-Experts Wait-k Policy to achieve the best translation quality under arbitrary latency with only one trained model. Specifically, our method employs multi-head attention to accomplish the mixture of experts where each head is treated as a wait-k expert with its own waiting words number, and given a test latency and source inputs, the weights of the experts are accordingly adjusted to produce the best translation. Experiments on three datasets show that our method outperforms all the strong baselines under different latency, including the state-of-the-art adaptive policy.
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the model's uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا