Do you want to publish a course? Click here

This paper presents the NICT Kyoto submission for the WMT'21 Quality Estimation (QE) Critical Error Detection shared task (Task 3). Our approach relies mainly on QE model pretraining for which we used 11 language pairs, three sentence-level and three word-level translation quality metrics. Starting from an XLM-R checkpoint, we perform continued training by modifying the learning objective, switching from masked language modeling to QE oriented signals, before finetuning and ensembling the models. Results obtained on the test set in terms of correlation coefficient and F-score show that automatic metrics and synthetic data perform well for pretraining, with our submissions ranked first for two out of four language pairs. A deeper look at the impact of each metric on the downstream task indicates higher performance for token oriented metrics, while an ablation study emphasizes the usefulness of conducting both self-supervised and QE pretraining.
This paper describes Papago submission to the WMT 2021 Quality Estimation Task 1: Sentence-level Direct Assessment. Our multilingual Quality Estimation system explores the combination of Pretrained Language Models and Multi-task Learning architecture s. We propose an iterative training pipeline based on pretraining with large amounts of in-domain synthetic data and finetuning with gold (labeled) data. We then compress our system via knowledge distillation in order to reduce parameters yet maintain strong performance. Our submitted multilingual systems perform competitively in multilingual and all 11 individual language pair settings including zero-shot.
This paper presents Imperial College London's submissions to the WMT21 Quality Estimation (QE) Shared Task 3: Critical Error Detection. Our approach builds on cross-lingual pre-trained representations in a sequence classification model. We further im prove the base classifier by (i) adding a weighted sampler to deal with unbalanced data and (ii) introducing feature engineering, where features related to toxicity, named-entities and sentiment, which are potentially indicative of critical errors, are extracted using existing tools and integrated to the model in different ways. We train models with one type of feature at a time and ensemble those models that improve over the base classifier on the development (dev) set. Our official submissions achieve very competitive results, ranking second for three out of four language pairs.
Although deep neural networks have been widely employed and proven effective in sentiment analysis tasks, it remains challenging for model developers to assess their models for erroneous predictions that might exist prior to deployment. Once deployed , emergent errors can be hard to identify in prediction run-time and impossible to trace back to their sources. To address such gaps, in this paper we propose an error detection framework for sentiment analysis based on explainable features. We perform global-level feature validation with human-in-the-loop assessment, followed by an integration of global and local-level feature contribution analysis. Experimental results show that, given limited human-in-the-loop intervention, our method is able to identify erroneous model predictions on unseen data with high precision.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا