Do you want to publish a course? Click here

Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each loc al sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.
Most of the previous Rhetorical Structure Theory (RST) parsing methods are based on supervised learning such as neural networks, that require an annotated corpus of sufficient size and quality. However, the RST Discourse Treebank (RST-DT), the benchm ark corpus for RST parsing in English, is small due to the costly annotation of RST trees. The lack of large annotated training data causes poor performance especially in relation labeling. Therefore, we propose a method for improving neural RST parsing models by exploiting silver data, i.e., automatically annotated data. We create large-scale silver data from an unlabeled corpus by using a state-of-the-art RST parser. To obtain high-quality silver data, we extract agreement subtrees from RST trees for documents built using the RST parsers. We then pre-train a neural RST parser with the obtained silver data and fine-tune it on the RST-DT. Experimental results show that our method achieved the best micro-F1 scores for Nuclearity and Relation at 75.0 and 63.2, respectively. Furthermore, we obtained a remarkable gain in the Relation score, 3.0 points, against the previous state-of-the-art parser.
We introduce a novel top-down end-to-end formulation of document level discourse parsing in the Rhetorical Structure Theory (RST) framework. In this formulation, we consider discourse parsing as a sequence of splitting decisions at token boundaries a nd use a seq2seq network to model the splitting decisions. Our framework facilitates discourse parsing from scratch without requiring discourse segmentation as a prerequisite; rather, it yields segmentation as part of the parsing process. Our unified parsing model adopts a beam search to decode the best tree structure by searching through a space of high scoring trees. With extensive experiments on the standard RST discourse treebank, we demonstrate that our parser outperforms existing methods by a good margin in both end-to-end parsing and parsing with gold segmentation. More importantly, it does so without using any handcrafted features, making it faster and easily adaptable to new languages and domains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا