Do you want to publish a course? Click here

The task of Event Detection (ED) in Information Extraction aims to recognize and classify trigger words of events in text. The recent progress has featured advanced transformer-based language models (e.g., BERT) as a critical component in state-of-th e-art models for ED. However, the length limit for input texts is a barrier for such ED models as they cannot encode long-range document-level context that has been shown to be beneficial for ED. To address this issue, we propose a novel method to model document-level context for ED that dynamically selects relevant sentences in the document for the event prediction of the target sentence. The target sentence will be then augmented with the selected sentences and consumed entirely by transformer-based language models for improved representation learning for ED. To this end, the REINFORCE algorithm is employed to train the relevant sentence selection for ED. Several information types are then introduced to form the reward function for the training process, including ED performance, sentence similarity, and discourse relations. Our extensive experiments on multiple benchmark datasets reveal the effectiveness of the proposed model, leading to new state-of-the-art performance.
Previous work on crosslingual Relation and Event Extraction (REE) suffers from the monolingual bias issue due to the training of models on only the source language data. An approach to overcome this issue is to use unlabeled data in the target langua ge to aid the alignment of crosslingual representations, i.e., via fooling a language discriminator. However, as this approach does not condition on class information, a target language example of a class could be incorrectly aligned to a source language example of a different class. To address this issue, we propose a novel crosslingual alignment method that leverages class information of REE tasks for representation learning. In particular, we propose to learn two versions of representation vectors for each class in an REE task based on either source or target language examples. Representation vectors for corresponding classes will then be aligned to achieve class-aware alignment for crosslingual representations. In addition, we propose to further align representation vectors for language-universal word categories (i.e., parts of speech and dependency relations). As such, a novel filtering mechanism is presented to facilitate the learning of word category representations from contextualized representations on input texts based on adversarial learning. We conduct extensive crosslingual experiments with English, Chinese, and Arabic over REE tasks. The results demonstrate the benefits of the proposed method that significantly advances the state-of-the-art performance in these settings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا