Do you want to publish a course? Click here

Topic models are useful tools for analyzing and interpreting the main underlying themes of large corpora of text. Most topic models rely on word co-occurrence for computing a topic, i.e., a weighted set of words that together represent a high-level s emantic concept. In this paper, we propose a new light-weight Self-Supervised Neural Topic Model (SNTM) that learns a rich context by learning a topic representation jointly from three co-occurring words and a document that the triple originates from. Our experimental results indicate that our proposed neural topic model, SNTM, outperforms previously existing topic models in coherence metrics as well as document clustering accuracy. Moreover, apart from the topic coherence and clustering performance, the proposed neural topic model has a number of advantages, namely, being computationally efficient and easy to train.
A bigger is better'' explosion in the number of parameters in deep neural networks has made it increasingly challenging to make state-of-the-art networks accessible in compute-restricted environments. Compression techniques have taken on renewed impo rtance as a way to bridge the gap. However, evaluation of the trade-offs incurred by popular compression techniques has been centered on high-resource datasets. In this work, we instead consider the impact of compression in a data-limited regime. We introduce the term low-resource double bind to refer to the co-occurrence of data limitations and compute resource constraints. This is a common setting for NLP for low-resource languages, yet the trade-offs in performance are poorly studied. Our work offers surprising insights into the relationship between capacity and generalization in data-limited regimes for the task of machine translation. Our experiments on magnitude pruning for translations from English into Yoruba, Hausa, Igbo and German show that in low-resource regimes, sparsity preserves performance on frequent sentences but has a disparate impact on infrequent ones. However, it improves robustness to out-of-distribution shifts, especially for datasets that are very distinct from the training distribution. Our findings suggest that sparsity can play a beneficial role at curbing memorization of low frequency attributes, and therefore offers a promising solution to the low-resource double bind.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا