Do you want to publish a course? Click here

NLP models are vulnerable to data poisoning attacks. One type of attack can plant a backdoor in a model by injecting poisoned examples in training, causing the victim model to misclassify test instances which include a specific pattern. Although defe nces exist to counter these attacks, they are specific to an attack type or pattern. In this paper, we propose a generic defence mechanism by making the training process robust to poisoning attacks through gradient shaping methods, based on differentially private training. We show that our method is highly effective in mitigating, or even eliminating, poisoning attacks on text classification, with only a small cost in predictive accuracy.
Adversarial attacks alter NLP model predictions by perturbing test-time inputs. However, it is much less understood whether, and how, predictions can be manipulated with small, concealed changes to the training data. In this work, we develop a new da ta poisoning attack that allows an adversary to control model predictions whenever a desired trigger phrase is present in the input. For instance, we insert 50 poison examples into a sentiment model's training set that causes the model to frequently predict Positive whenever the input contains James Bond''. Crucially, we craft these poison examples using a gradient-based procedure so that they do not mention the trigger phrase. We also apply our poison attack to language modeling (Apple iPhone'' triggers negative generations) and machine translation (iced coffee'' mistranslated as hot coffee''). We conclude by proposing three defenses that can mitigate our attack at some cost in prediction accuracy or extra human annotation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا