Do you want to publish a course? Click here

Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised traini ng stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks. Our code will be publicly available after publication.
Recent work in multilingual natural language processing has shown progress in various tasks such as natural language inference and joint multilingual translation. Despite success in learning across many languages, challenges arise where multilingual training regimes often boost performance on some languages at the expense of others. For multilingual named entity recognition (NER) we propose a simple technique that groups similar languages together by using embeddings from a pre-trained masked language model, and automatically discovering language clusters in this embedding space. Specifically, we fine-tune an XLM-Roberta model on a language identification task, and use embeddings from this model for clustering. We conduct experiments on 15 diverse languages in the WikiAnn dataset and show our technique largely outperforms three baselines: (1) training a multilingual model jointly on all available languages, (2) training one monolingual model per language, and (3) grouping languages by linguistic family. We also conduct analyses showing meaningful multilingual transfer for low-resource languages (Swahili and Yoruba), despite being automatically grouped with other seemingly disparate languages.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا