Do you want to publish a course? Click here

Relations in most of the traditional knowledge graphs (KGs) only reflect static and factual connections, but fail to represent the dynamic activities and state changes about entities. In this paper, we emphasize the importance of incorporating events in KG representation learning, and propose an event-enhanced KG embedding model EventKE. Specifically, given the original KG, we first incorporate event nodes by building a heterogeneous network, where entity nodes and event nodes are distributed on the two sides of the network inter-connected by event argument links. We then use entity-entity relations from the original KG and event-event temporal links to inner-connect entity and event nodes respectively. We design a novel and effective attention-based message passing method, which is conducted on entity-entity, event-entity, and event-event relations to fuse the event information into KG embeddings. Experimental results on real-world datasets demonstrate that events can greatly improve the quality of the KG embeddings on multiple downstream tasks.
Recent knowledge graph embedding (KGE) models based on hyperbolic geometry have shown great potential in a low-dimensional embedding space. However, the necessity of hyperbolic space in KGE is still questionable, because the calculation based on hype rbolic geometry is much more complicated than Euclidean operations. In this paper, based on the state-of-the-art hyperbolic-based model RotH, we develop two lightweight Euclidean-based models, called RotL and Rot2L. The RotL model simplifies the hyperbolic operations while keeping the flexible normalization effect. Utilizing a novel two-layer stacked transformation and based on RotL, the Rot2L model obtains an improved representation capability, yet costs fewer parameters and calculations than RotH. The experiments on link prediction show that Rot2L achieves the state-of-the-art performance on two widely-used datasets in low-dimensional knowledge graph embeddings. Furthermore, RotL achieves similar performance as RotH but only requires half of the training time.
To find a suitable embedding for a knowledge graph remains a big challenge nowadays. By using previous knowledge graph embedding methods, every entity in a knowledge graph is usually represented as a k-dimensional vector. As we know, an affine transf ormation can be expressed in the form of a matrix multiplication followed by a translation vector. In this paper, we firstly utilize a set of affine transformations related to each relation to operate on entity vectors, and then these transformed vectors are used for performing embedding with previous methods. The main advantage of using affine transformations is their good geometry properties with interpretability. Our experimental results demonstrate that the proposed intuitive design with affine transformations provides a statistically significant increase in performance with adding a few extra processing steps or adding a limited number of additional variables. Taking TransE as an example, we employ the scale transformation (the special case of an affine transformation), and only introduce k additional variables for each relation. Surprisingly, it even outperforms RotatE to some extent on various data sets. We also introduce affine transformations into RotatE, Distmult and ComplEx, respectively, and each one outperforms its original method.
Recent literatures have shown that knowledge graph (KG) learning models are highly vulnerable to adversarial attacks. However, there is still a paucity of vulnerability analyses of cross-lingual entity alignment under adversarial attacks. This paper proposes an adversarial attack model with two novel attack techniques to perturb the KG structure and degrade the quality of deep cross-lingual entity alignment. First, an entity density maximization method is employed to hide the attacked entities in dense regions in two KGs, such that the derived perturbations are unnoticeable. Second, an attack signal amplification method is developed to reduce the gradient vanishing issues in the process of adversarial attacks for further improving the attack effectiveness.
An exciting frontier in natural language understanding (NLU) and generation (NLG) calls for (vision-and-) language models that can efficiently access external structured knowledge repositories. However, many existing knowledge bases only cover limite d domains, or suffer from noisy data, and most of all are typically hard to integrate into neural language pipelines. To fill this gap, we release VisualSem: a high-quality knowledge graph (KG) which includes nodes with multilingual glosses, multiple illustrative images, and visually relevant relations. We also release a neural multi-modal retrieval model that can use images or sentences as inputs and retrieves entities in the KG. This multi-modal retrieval model can be integrated into any (neural network) model pipeline. We encourage the research community to use VisualSem for data augmentation and/or as a source of grounding, among other possible uses. VisualSem as well as the multi-modal retrieval models are publicly available and can be downloaded in this URL: https://github.com/iacercalixto/visualsem.
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it in to smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.
This paper presents our endeavor for solving task11, NLPContributionGraph, of SemEval-2021. The purpose of the task was to extract triples from a paper in the Nature Language Processing field for constructing an Open Research Knowledge Graph. The tas k includes three sub-tasks: detecting the contribution sentences in papers, identifying scientific terms and predicate phrases from the contribution sentences; and inferring triples in the form of (subject, predicate, object) as statements for Knowledge Graph building. In this paper, we apply an ensemble of various fine-tuned pre-trained language models (PLM) for tasks one and two. In addition, self-training methods are adopted for tackling the shortage of annotated data. For the third task, rather than using classic neural open information extraction (OIE) architectures, we generate potential triples via manually designed rules and develop a binary classifier to differentiate positive ones from others. The quantitative results show that we obtain the 4th, 2nd, and 2nd rank in three evaluation phases.
Conventional Knowledge Graph Completion (KGC) assumes that all test entities appear during training. However, in real-world scenarios, Knowledge Graphs (KG) evolve fast with out-of-knowledge-graph (OOKG) entities added frequently, and we need to effi ciently represent these entities. Most existing Knowledge Graph Embedding (KGE) methods cannot represent OOKG entities without costly retraining on the whole KG. To enhance efficiency, we propose a simple and effective method that inductively represents OOKG entities by their optimal estimation under translational assumptions. Moreover, given pretrained embeddings of the in-knowledge-graph (IKG) entities, our method even needs no additional learning. Experimental results on two KGC tasks with OOKG entities show that our method outperforms the previous methods by a large margin with higher efficiency.
Prior work on Data-To-Text Generation, the task of converting knowledge graph (KG) triples into natural text, focused on domain-specific benchmark datasets. In this paper, however, we verbalize the entire English Wikidata KG, and discuss the unique c hallenges associated with a broad, open-domain, large-scale verbalization. We further show that verbalizing a comprehensive, encyclopedic KG like Wikidata can be used to integrate structured KGs and natural language corpora. In contrast to the many architectures that have been developed to integrate these two sources, our approach converts the KG into natural text, allowing it to be seamlessly integrated into existing language models. It carries the further advantages of improved factual accuracy and reduced toxicity in the resulting language model. We evaluate this approach by augmenting the retrieval corpus in a retrieval language model and showing significant improvements on the knowledge intensive tasks of open domain QA and the LAMA knowledge probe.
Representation learning approaches for knowledge graphs have been mostly designed for static data. However, many knowledge graphs involve evolving data, e.g., the fact (The President of the United States is Barack Obama) is valid only from 2009 to 20 17. This introduces important challenges for knowledge representation learning since the knowledge graphs change over time. In this paper, we present a novel time-aware knowledge graph embebdding approach, TeLM, which performs 4th-order tensor factorization of a Temporal knowledge graph using a Linear temporal regularizer and Multivector embeddings. Moreover, we investigate the effect of the temporal dataset's time granularity on temporal knowledge graph completion. Experimental results demonstrate that our proposed models trained with the linear temporal regularizer achieve the state-of-the-art performances on link prediction over four well-established temporal knowledge graph completion benchmarks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا