Do you want to publish a course? Click here

Laser driving in systems with competing or coupled electronic orders can lead to the enhancement of orders, or even to the appearance of hidden phases without an equilibrium analogue. Here we consider a model for A$_3$C$_{60}$ which exhibits a unique interplay between conventional and odd-frequency (or composite) orders. In particular, we show that photo-doping of the antiferromagnetic Mott insulating phase, as realized in Cs$_3$C$_{60}$, results in a paramagnetic gapped state with broken orbital symmetry. This hidden phase, which does not exist under equilibrium conditions, can be interpreted as an odd-frequency orbital-ordered state, and is conceptually related to the equilibrium Jahn-Teller metal in more weakly correlated compounds. Our study demonstrates the appearance of pure odd-frequency order via the nonthermal melting of magnetic order, and provides an interesting example of nonequilibrium control of electronic orders in a multi-orbital system.
We use the nonequilibrium dynamical mean field theory formalism to compute the equilibrium and nonequilibrium resonant inelastic X-ray scattering (RIXS) signal of a strongly interacting fermionic lattice model with a coupling of dispersionless phonons to the total charge on a given site. In the atomic limit, this model produces phonon subbands in the spectral function, but not in the RIXS signal. Electron hopping processes however result in phonon-related modifications of the charge excitation peak. We discuss the equilibrium RIXS spectra and the characteristic features of nonequilibrium states induced by photo-doping and by the application of a static electric field. The latter produces features related to Wannier-Stark states, which are dressed with phonon sidebands. Thanks to the effect of field-induced localization, the phonon features can be clearly resolved even in systems with weak electron-phonon coupling.
Resonant inelastic X-ray scattering (RIXS) detects various types of high- and low-energy elementary excitations in correlated solids, and this tool will play an increasingly important role in investigations of time-dependent phenomena in photo-excited systems. While theoretical frameworks for the computation of equilibrium RIXS spectra are well established, the development of appropriate methods for nonequilibrium simulations are an active research field. Here, we apply a recently developed nonequilibrium dynamical mean field theory (DMFT) based approach to compute the RIXS response of photo-excited two-orbital Mott insulators. The results demonstrate the feasibility of multi-orbital nonequilibrium RIXS calculations and the sensitivity of the quasi-elastic fluorescence-like features and d-d excitation peaks on the nonequilibrium population of the Hubbard bands.
We consider a two-orbital Hubbard model with Hund coupling and crystal-field splitting and show that in the vicinity of the high-spin/low-spin transition, crystal-field quenches can induce an excitonic condensation at initial temperatures above the highest ordering temperature in equilibrium. This condensation is the effect of an increase in the spin entropy and an associated cooling of the effective electronic temperature. We identify a dynamical phase transition and show that such quenches can result in long-lived nonthermal excitonic condensates which have no analogue in the equilibrium phase diagram. The results are interpreted by means of an effective pseudo-spin model.
We analyze the dynamical nearest-neighbor and next-nearest-neighbor spin correlations in the 4-site and 8-site dynamical cluster approximation to the two-dimensional Hubbard model. Focusing on the robustness of these correlations at long imaginary times, we reveal enhanced ferromagnetic correlations on the lattice diagonal, consistent with the emergence of composite spin-1 moments at a temperature scale that essentially coincides with the pseudo-gap temperature $T^*$. We discuss these results in the context of the spin-freezing theory of unconventional superconductivity.
Superconductivity with a remarkably high $T_c$ has recently been found in Sr-doped NdNiO$_2$ thin films. While this system bears strong similarities to the cuprates, some differences, such as a weaker antiferromagnetic exchange coupling and possible high-spin moments on the doped Ni sites have been pointed out. Here, we investigate the effect of Hund coupling and crystal field splitting in a simple model system and argue that a multiorbital description of nickelate superconductors is warranted, especially in the strongly hole-doped regime. We then look at this system from the viewpoint of the spin-freezing theory of unconventional superconductivity, which provides a unified understanding of unconventional superconductivity in a broad range of compounds. Sr$_{0.2}$Nd$_{0.8}$NiO$_2$ falls into a parameter regime influenced by two spin-freezing crossovers, one related to the emergent multi-orbital nature in the strongly doped regime and the other related to the single-band character and square lattice geometry in the weakly doped regime.
We show that the recently proposed cooling-by-doping mechanism allows to efficiently prepare interesting nonequilibrium states of the Hubbard model. Using nonequilibrium dynamical mean field theory and a particle-hole symmetric setup with dipolar excitations to full and empty bands we produce cold photo-doped Mott insulating states with a sharp Drude peak in the optical conductivity, a superconducting state in the repulsive Hubbard model with an inverted population, and $eta$-paired states in systems with a large density of doublons and holons. The reshuffling of entropy into full and empty bands not only provides an efficient cooling mechanism, it also allows to overcome thermalization bottlenecks and slow dynamics that have been observed in systems cooled by the coupling to boson baths.
The aim of this paper is to further develop mathematical models for bleb formation in cells, including cell-membrane interactions with linker proteins. This leads to nonlinear reaction-diffusion equations on a surface coupled to fluid dynamics in the bulk. We provide a detailed mathematical analysis and investigate some singular limits of the model, connecting it to previous literature. Moreover, we provide numerical simulations in different scenarios, confirming that the model can reproduce experimental results on bleb initation.
An elusive goal in the field of driven quantum matter is the induction of long-range order. Here, we demonstrate a mechanism based on light-induced evaporative cooling of holes in a correlated electron system. Since the entropy of a filled narrow band grows rapidly with hole doping, the isentropic transfer of holes from a doped Mott insulator to such a band results in a drop of temperature. Strongly correlated Fermi liquids and symmetry-broken states could thus be produced by dipolar excitations. Using nonequilibrium dynamical mean field theory, we show that suitably designed chirped pulses allow to realize this cooling effect. In particular, we demonstrate the emergence of antiferromagnetic order in a system which is initially in a weakly correlated state above the maximum Neel temperature. Our work suggests a general strategy for inducing strong correlation phenomena and electronic orders in light-driven materials or periodically modulated atomic gases in optical lattice potentials.
We check the accuracy of the constrained random phase approximation (cRPA) downfolding scheme by considering one-dimensional two- and three-orbital Hubbard models with a target band at the Fermi level and one or two screening bands away from the Fermi level. Using numerically exact quantum Monte Carlo simulations of the full and downfolded model we demonstrate that depending on filling the effective interaction in the low-energy theory is either barely screened, or antiscreened, in contrast to the cRPA prediction. This observation is explained by a functional renormalization group analysis which shows that the cRPA contribution to the screening is to a large extent cancelled by other diagrams in the direct particle-hole channel. We comment on the implications of this finding for the ab-initio estimation of interaction parameters in low-energy descriptions of solids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا