Do you want to publish a course? Click here

This paper describes a method for retrieving evidence and predicting the veracity of factual claims, on the FEVEROUS dataset. The evidence consists of both sentences and table cells. The proposed method is part of the FEVER shared task. It uses simil arity scores between TF-IDF vectors to retrieve the textual evidence and similarity scores between dense vectors created by fine-tuned TaPaS models for tabular evidence retrieval. The evidence is passed through a dense neural network to produce a veracity label. The FEVEROUS score for the proposed system is 0.126.
Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle Eva Luation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contrac'tion and numb3r substitution). We find that BERT-based methods outperform simple versions of commonly used style measures like 3-grams, punctuation frequency and LIWC-based approaches. We invite the addition of further tasks and task instances to STEL and hope to facilitate the improvement of style-sensitive measures.
Exposure bias has been regarded as a central problem for auto-regressive language models (LM). It claims that teacher forcing would cause the test-time generation to be incrementally distorted due to the training-generation discrepancy. Although a lo t of algorithms have been proposed to avoid teacher forcing and therefore alleviate exposure bias, there is little work showing how serious the exposure bias problem actually is. In this work, we focus on the task of open-ended language generation, propose metrics to quantify the impact of exposure bias in the aspects of quality, diversity, and consistency. Our key intuition is that if we feed ground-truth data prefixes (instead of prefixes generated by the model itself) into the model and ask it to continue the generation, the performance should become much better because the training-generation discrepancy in the prefix is removed. Both automatic and human evaluations are conducted in our experiments. On the contrary to the popular belief in exposure bias, we find that the the distortion induced by the prefix discrepancy is limited, and does not seem to be incremental during the generation. Moreover, our analysis reveals an interesting self-recovery ability of the LM, which we hypothesize to be countering the harmful effects from exposure bias.
Abstractive conversation summarization has received growing attention while most current state-of-the-art summarization models heavily rely on human-annotated summaries. To reduce the dependence on labeled summaries, in this work, we present a simple yet effective set of Conversational Data Augmentation (CODA) methods for semi-supervised abstractive conversation summarization, such as random swapping/deletion to perturb the discourse relations inside conversations, dialogue-acts-guided insertion to interrupt the development of conversations, and conditional-generation-based substitution to substitute utterances with their paraphrases generated based on the conversation context. To further utilize unlabeled conversations, we combine CODA with two-stage noisy self-training where we first pre-train the summarization model on unlabeled conversations with pseudo summaries and then fine-tune it on labeled conversations. Experiments conducted on the recent conversation summarization datasets demonstrate the effectiveness of our methods over several state-of-the-art data augmentation baselines.
We present a new form of ensemble method--Devil's Advocate, which uses a deliberately dissenting model to force other submodels within the ensemble to better collaborate. Our method consists of two different training settings: one follows the convent ional training process (Norm), and the other is trained by artificially generated labels (DevAdv). After training the models, Norm models are fine-tuned through an additional loss function, which uses the DevAdv model as a constraint. In making a final decision, the proposed ensemble model sums the scores of Norm models and then subtracts the score of the DevAdv model. The DevAdv model improves the overall performance of the other models within the ensemble. In addition to our ensemble framework being based on psychological background, it also shows comparable or improved performance on 5 text classification tasks when compared to conventional ensemble methods.
This paper describes the submission to the WMT 2021 news translation shared task by the UPC Machine Translation group. The goal of the task is to translate German to French (De-Fr) and French to German (Fr-De). Our submission focuses on fine-tuning a pre-trained model to take advantage of monolingual data. We fine-tune mBART50 using the filtered data, and additionally, we train a Transformer model on the same data from scratch. In the experiments, we show that fine-tuning mBART50 results in 31.69 BLEU for De-Fr and 23.63 BLEU for Fr-De, which increases 2.71 and 1.90 BLEU accordingly, as compared to the model we train from scratch. Our final submission is an ensemble of these two models, further increasing 0.3 BLEU for Fr-De.
This paper shows that CIDEr-D, a traditional evaluation metric for image description, does not work properly on datasets where the number of words in the sentence is significantly greater than those in the MS COCO Captions dataset. We also show that CIDEr-D has performance hampered by the lack of multiple reference sentences and high variance of sentence length. To bypass this problem, we introduce CIDEr-R, which improves CIDEr-D, making it more flexible in dealing with datasets with high sentence length variance. We demonstrate that CIDEr-R is more accurate and closer to human judgment than CIDEr-D; CIDEr-R is more robust regarding the number of available references. Our results reveal that using Self-Critical Sequence Training to optimize CIDEr-R generates descriptive captions. In contrast, when CIDEr-D is optimized, the generated captions' length tends to be similar to the reference length. However, the models also repeat several times the same word to increase the sentence length.
Although researches on word embeddings have made great progress in recent years, many tasks in natural language processing are on the sentence level. Thus, it is essential to learn sentence embeddings. Recently, Sentence BERT (SBERT) is proposed to l earn embeddings on the sentence level, and it uses the inner product (or, cosine similarity) to compute semantic similarity between sentences. However, this measurement cannot well describe the semantic structures among sentences. The reason is that sentences may lie on a manifold in the ambient space rather than distribute in an Euclidean space. Thus, cosine similarity cannot approximate distances on the manifold. To tackle the severe problem, we propose a novel sentence embedding method called Sentence BERT with Locality Preserving (SBERT-LP), which discovers the sentence submanifold from a high-dimensional space and yields a compact sentence representation subspace by locally preserving geometric structures of sentences. We compare the SBERT-LP with several existing sentence embedding approaches from three perspectives: sentence similarity, sentence classification and sentence clustering. Experimental results and case studies demonstrate that our method encodes sentences better in the sense of semantic structures.
We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using t he permutation invariant message passing operations, we show that we can gain extra performance improvements using our proposed selective graph pooling operation that arises from the fact that some parts of the hierarchy are invariable across different documents. We applied our model to classify clinical trial (CT) protocols into completed and terminated categories. We use bag-of-words based, as well as pre-trained transformer-based embeddings to featurize the graph nodes, achieving f1-scoresaround 0.85 on a publicly available large scale CT registry of around 360K protocols. We further demonstrate how the selective pooling can add insights into the CT termination status prediction. We make the source code and dataset splits accessible.
Although neural sequence-to-sequence models have been successfully applied to semantic parsing, they fail at compositional generalization, i.e., they are unable to systematically generalize to unseen compositions of seen components. Motivated by trad itional semantic parsing where compositionality is explicitly accounted for by symbolic grammars, we propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models while featuring lexicon-style alignments and disentangled information processing. Specifically, we decompose decoding into two phases where an input utterance is first tagged with semantic symbols representing the meaning of individual words, and then a sequence-to-sequence model is used to predict the final meaning representation conditioning on the utterance and the predicted tag sequence. Experimental results on three semantic parsing datasets show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا