Do you want to publish a course? Click here

Growth-induced pattern formations in curved film-substrate structures have attracted extensive attentions recently. In most existing literature, the growth tensor is assumed to be homogeneous or piecewise homogeneous. In this paper, we aim at clarifying the influence of a growth gradient on pattern formation and pattern evolution in bilayered tubular tissues under plane-strain deformation. In the framework of finite elasticity, a bifurcation condition is derived for a general material model and a generic growth function. Then we suppose that both layers are composed of neo-Hookean materials. In particular, the growth function is assumed to decay linearly from the inner surface or from the outer surface. It is found that a gradient in the growth has a weak effect on the critical state, compared to the homogeneous growth type where both layers share the same growth factor. Furthermore, a finite element model is built to validate the theoretical model and to investigate the post-buckling behaviors. It is found that the associated pattern transition is not controlled by the growth gradient but by the ratio of the shear modulus between two layers. Different morphologies can occur when the modulus ratio is varied. The current analysis could provide useful insight into the influence of a growth gradient on surface instabilities and suggests that a homogeneous growth field may provide a good approximation on interpreting complicated morphological formations in multiple systems.
116 - Mingtao Zhou , Zongxi Cai , 2021
We investigate the buckling and post-buckling properties of a hyperelastic half-space coated by two hyperelastic layers when the composite structure is subjected to a uniaxial compression. In the case of a half-space coated with a {it single} layer, it is known that when the shear modulus $mu_f$ of the layer is larger than the shear modulus $mu_s$ of the half-space, a linear analysis predicts the existence of a critical stretch and wave number, whereas a weakly nonlinear analysis predicts the existence of a threshold value of the modulus ratio $mu_s/mu_fapprox 0.57$ below which the buckling is super-critical and above which the buckling is sub-critical. It is shown in this paper that when another layer is added, a larger variety of behaviour can be observed. For instance, buckling can occur at a preferred wavenumber super-critically even if both layers are softer than the half-space although the top layer would need to be harder than the bottom layer. When the shear modulus of the bottom layer lies in a certain interval, the super-critical to sub-critical transition can happen a number of times as the shear modulus of the top layer is increased gradually. Thus, an extra layer imparts more flexibility in producing wrinkling patterns with desired properties, and our weakly nonlinear analysis provides a road map on the parameter regimes where this can be achieved.
59 - Hui-Hui Dai , Zongxi Cai 2009
In the experiments on stress-induced phase transitions in SMA strips, several interesting instability phenomena have been observed, including a necking-type instability, a shear-type instability and an orientation instability. By using the smallness of the maximum strain, the thickness and width of the strip, we use a methodology, which combines series expansions and asymptotic expansions, to derive the asymptotic normal form equations, which can yield the leading-order behavior of the original three-dimensional field equations. Our analytical results reveal that the inclination of the phase front is a phenomenon of localization-induced buckling (or phase-transition-induced buckling as the localization is caused by the phase transition). Due to the similarities between the development of the Luders band in a mild steel and the stress-induced transformations in a SMA, the present results give a strong analytical evidence that the former is also caused by macroscopic effects instead of microscopic effects. Our analytical results also reveal more explicitly the important roles played by the geometrical parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا