Do you want to publish a course? Click here

A thorough backward stability analysis of Hotellings deflation, an explicit external deflation procedure through low-rank updates for computing many eigenpairs of a symmetric matrix, is presented. Computable upper bounds of the loss of the orthogonality of the computed eigenvectors and the symmetric backward error norm of the computed eigenpairs are derived. Sufficient conditions for the backward stability of the explicit external deflation procedure are revealed. Based on these theoretical results, the strategy for achieving numerical backward stability by dynamically selecting the shifts is proposed. Numerical results are presented to corroborate the theoretical analysis and to demonstrate the stability of the procedure for computing many eigenpairs of large symmetric matrices arising from applications.
A central feature of the Periodic Anderson Model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization $V$, and singlet formation at large $V$. At zero temperature, and in dimension $d>1$, these two phases are separated by a quantum critical point $V_c$. We use Quantum Monte Carlo simulations to explore the effect of impurities which have a local hybridization $V_{*} < V_c$ in the AF regime which are embedded in a bulk singlet phase with $V > V_c$. We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Our calculations agree qualitatively with NMR measurements in CeCoIn$_{5-x}$Cd$_x$.
A major hindrance to studies of microbial diversity has been that the vast majority of microbes cannot be cultured in the laboratory and thus are not amenable to traditional methods of characterization. Environmental shotgun sequencing (ESS) overcomes this hurdle by sequencing the DNA from the organisms present in a microbial community. The interpretation of this metagenomic data can be greatly facilitated by associating every sequence read with its source organism. We report the development of CompostBin, a DNA composition-based algorithm for analyzing metagenomic sequence reads and distributing them into taxon-specific bins. Unlike previous methods that seek to bin assembled contigs and often require training on known reference genomes, CompostBin has the ability to accurately bin raw sequence reads without need for assembly or training. It applies principal component analysis to project the data into an informative lower-dimensional space, and then uses the normalized cut clustering algorithm on this filtered data set to classify sequences into taxon-specific bins. We demonstrate the algorithms accuracy on a variety of simulated data sets and on one metagenomic data set with known species assignments. CompostBin is a work in progress, with several refinements of the algorithm planned for the future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا