Do you want to publish a course? Click here

Impurity-Induced Antiferromagnetic Domains in the Periodic Anderson Model

143   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A central feature of the Periodic Anderson Model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization $V$, and singlet formation at large $V$. At zero temperature, and in dimension $d>1$, these two phases are separated by a quantum critical point $V_c$. We use Quantum Monte Carlo simulations to explore the effect of impurities which have a local hybridization $V_{*} < V_c$ in the AF regime which are embedded in a bulk singlet phase with $V > V_c$. We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Our calculations agree qualitatively with NMR measurements in CeCoIn$_{5-x}$Cd$_x$.



rate research

Read More

97 - Mi Jiang 2020
Heavy fermion compounds consisting of two or more inequivalent local moment sites per unit cell have been a promising platform of investigating the interplay between distinct Kondo screenings that is absent in the conventional systems containing only one rare-earth ion per unit cell. We report a remarkable enhancement of the antiferromagnetic (AF) ordering tendency in the staggered periodic Anderson model (PAM) with two alternating inequivalent local moments if their hybridization strengths reside in the Kondo singlet and antiferromagnetic insulator regime separately of the phase diagram of homogeneous PAM. Our results uncover the rich physics induced by the interplay of multiple energy scales in the staggered PAM and furthermore implies the ubiquitous existence of the enhancement of physical quantities in general inhomogeneous systems.
198 - R. Allub 2008
We study the zero-bandwidth limit of the two-impurity Anderson model in an antiferromagnetic (AF) metal. We calculate, for different values of the model parameters, the lowest excitation energy, the magnetic correlation $<mathbf{S}_{1}mathbf{S}_{2}>$ between the impurities, and the magnetic moment at each impurity site, as a function of the distance between the impurities and the temperature. At zero temperature, in the region of parameters corresponding to the Kondo regime of the impurities, we observe an interesting competition between the AF gap and the Kondo physics of the two impurities. When the impurities are close enough, the AF splitting governs the physics of the system and the local moments of the impurities are frozen, in a state with very strong ferromagnetic correlation between the impurities and roughly independent of the distance. On the contrary, when the impurities are sufficiently far apart and the AF gap is not too large, the scenario of the Kondo physics take place: non-magnetic ground state and the possibility of spin-flip excitation emerges and the ferromagnetic $<mathbf{S}_{1}mathbf{S}_{2}>$ decreases as the distance increases, but the complete decoupling of the impurities never occurs. In adition, the presence of the AF gap gives a non-zero magnetic moment at each impurity site, showing a non complete Kondo screening of the impurities in the system. We observe that the residual magnetic moment decreases when the distance between the impurities is increased.
233 - A. Kainz , A. Toschi , R. Peters 2012
Recently, dynamical mean field theory calculations have shown that kinks emerge in the real part of the self energy of strongly correlated metals close to the Fermi level. This gives rise to a similar behavior in the quasi-particle dispersion relation as well as in the electronic specific heat. Since f-electron systems are even more strongly correlated than the -hitherto studied- d-electron systems we apply the dynamical mean field approach with the numerical renormalization group method as impurity solver to study whether there are kinks in the periodic Anderson model.
The Kondo and Periodic Anderson Model (PAM) are known to provide a microscopic picture of many of the fundamental properties of heavy fermion materials and, more generally, a variety of strong correlation phenomena in $4f$ and $5f$ systems. In this paper, we apply the Determinant Quantum Monte Carlo (DQMC) method to include disorder in the PAM, specifically the removal of a fraction $x$ of the localized orbitals. We determine the evolution of the coherence temperature $T^*$, where the local moments and conduction electrons become entwined in a heavy fermion fluid, with $x$ and with the hybridization $V$ between localized and conduction orbitals. We recover several of the principal observed trends in $T^*$ of doped heavy fermions, and also show that, within this theoretical framework, the calculated Nuclear Magnetic Resonance (NMR) relaxation rate tracks the experimentally measured behavior in pure and doped CeCoIn$_5$. Our results contribute to important issues in the interpretation of local probes of disordered, strongly correlated systems.
We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime, we find a quantum phase transition as function of inter-impurity hopping driven by the charge degrees of freedom. For large values of the local Coulomb repulsion, the transition is driven instead by a competition between local and non-local magnetic correlations. We find evidence that, in contrast to the usual phenomenological picture, it seems to be the bare effective exchange interactions which trigger the observed transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا