Do you want to publish a course? Click here

Iron-based superconductivity develops near an antiferromagnetic order and out of a bad metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, and neutron scattering to demonstrate that NaFe$_{1-x}$Cu$_x$As near $xapprox 0.5$ exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behavior persisting above the Neel temperature, indicative of a Mott insulator. Upon decreasing $x$ from $0.5$, the antiferromagnetic ordered moment continuously decreases, yielding to superconductivity around $x=0.05$. Our discovery of a Mott insulating state in NaFe$_{1-x}$Cu$_x$As thus makes it the only known Fe-based material in which superconductivity can be smoothly connected to the Mott insulating state, highlighting the important role of electron correlations in the high-$T_{rm c}$ superconductivity.
We use polarized inelastic neutron scattering (INS) to study spin excitations in superconducting NaFe0.985Co0.015As (C15) with static antiferromagnetic (AF) order along the a-axis of the orthorhombic structure and NaFe0.935Co0.045As (C45) without AF order. In previous unpolarized INS work, spin excitations in C15 were found to have a dispersive sharp resonance near Er1=3.25 meV and a broad dispersionless mode at Er2=6 meV. Our neutron polarization analysis reveals that the dispersive resonance in C15 is highly anisotropic and polarized along the a- and c-axis, while the dispersionless mode is isotropic similar to that of C45. Since the a-axis polarized spin excitations of the anisotropic resonance appear below Tc, our data suggests that the itinerant electrons contributing to the magnetism are also coupled to the superconductivity.
We use unpolarized and polarized inelastic neutron scattering to study low-energy spin excitations in NaFeAs, which exhibits a tetragonal-to-orthorhombic lattice distortion at $T_sapprox 58$ K followed by a collinear antiferromagnetic (AF) order below $T_Napprox 45$ K. In the AF ordered state ($T<T_N$), spin waves are entirely c-axis polarized below $sim$10 meV, exhibiting a gap of $sim4$ meV at the AF zone center and disperse to $sim$7 meV near the c-axis AF zone boundary. On warming to the paramagnetic state with orthorhombic lattice distortion ($T_N<T<T_s$), spin excitations become anisotropic within the FeAs plane. Upon further warming to the paramagnetic tetragonal state ($T>T_s$), spin excitations become more isotropic. Since similar magnetic anisotropy is also observed in the paramagnetic tetragonal phase of superconducting BaFe$_{1.904}$Ni$_{0.096}$As$_2$, our results suggest that the spin excitation anisotropy in superconducting iron pnictides originates from similar anisotropy already present in their parent compounds.
A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the $s^pm$-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies ($Eleq 2Delta$) below $T_c$. On the other hand, the $s^{++}$-pairing symmetry expects a broad spin excitation enhancement at an energy above $2Delta$ below $T_c$. Although the resonance has been observed in iron pnictide superconductors at an energy below $2Delta$ consistent with the $s^pm$-pairing symmetry, the mode has also be interpreted as arising from the $s^{++}$-pairing symmetry with $Ege 2Delta$ due to its broad energy width and the large uncertainty in determining the SC gaps. Here we use inelastic neutron scattering to reveal a sharp resonance at E=7 meV in SC NaFe$_{0.935}$Co$_{0.045}$As ($T_c = 18$ K). On warming towards $T_c$, the mode energy hardly softens while its energy width increases rapidly. By comparing with calculated spin-excitations spectra within the $s^{pm}$ and $s^{++}$-pairing symmetries, we conclude that the ground-state resonance in NaFe$_{0.935}$Co$_{0.045}$As is only consistent with the $s^{pm}$-pairing, and is inconsistent with the $s^{++}$-pairing symmetry.
78 - Yu Song , Feng Zhai , Yong Guo 2013
The generation of a fully valley-polarized current (FVPC) in bulk graphene is a fundamental goal in valleytronics. To this end, we investigate valley-dependent transport through a strained graphene modulated by a finite magnetic superlattice. It is found that this device allows a coexistence of insulating transmission gap of one valley and metallic resonant band of the other. Accordingly, a substantial bulk FVPC appears in a wide range of edge orientation and temperature, which can be effectively tuned by structural parameters. A valley-resolved Hall configuration is designed to measure the valley polarization degree of the filtered current.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا