Do you want to publish a course? Click here

267 - Xinying Zhang , Jin Dai , Lin Guo 2021
Superconducting cavities with low RF frequencies and heavy damping of higher order modes (HOM) are desired for the main accelerator of High Energy Photon Source (HEPS), a 6 GeV synchrotron light source promising ultralow emittance currently under construction in Beijing. A compact 166.6 MHz superconducting cavity was proposed adopting a quarter-wave beta=1 geometry. Based on the successful development of a proof-of-principle cavity, a HOM-damped 166.6 MHz compact superconducting cavity was subsequently designed. A ferrite damper was installed on the beam pipe to reduce HOM impedance below the stringent threshold of coupled-bunch instabilities. Being compact, RF field heating on the cavity vacuum seal was carefully examined against quenching the NbTi flange. The cavity was later dressed with a helium vessel and the tuning mechanism was also realized. Excellent RF and mechanical properties were eventually achieved. Finally, the two-cavity string was designed to ensure smooth transitions among components and proper shielding of synchrotron light. This paper presents a complete design of a fully dressed HOM-damped low-frequency beta=1 superconducting cavity for HEPS.
Surface Van Hove singularity (SVHS), defined as the surface states near the Fermi level (EF) in low-dimensional systems, triggers exciting physical phenomena distinct from bulk. We herein explore theoretically the potential role of SVHS in catalysis taking CO oxidation reaction as prototype over graphene/Ca2N (Gra/Ca2N) heterojunction and Pt2HgSe3 (001) surface. It is demonstrated that both systems with SVHS could serve as an electron bath to promote O2 adsorption and subsequent CO oxidation with low energy barriers of 0.2 ~ 0.6 eV for Gra/Ca2N and Pt2HgSe3 (001) surface. Importantly, the catalytically active sites associated with SVHS are well-defined and uniformly distributed over the whole surface plane, which is superior to the commonly adopted defect or doping strategy, and further the chemical reactivity of SVHS also can be tuned easily via adjusting its position with respect to EF. Our study demonstrates the enabling power of SVHS, and provides novel physical insights into the promising potential role of VHS in designing high-efficiency catalysts.
Several supersonic runaway pulsar wind nebulae (sPWNe) with jet-like extended structures have been recently discovered in X-rays. If these structures are the product of electrons escaping the system and diffusing into the surrounding interstellar medium, they can produce a radio halo extending for several arcmin around the source. We model the expected radio emission in this scenario in the Lighthouse Nebula sPWN. We assume a constant particle injection rate during the source lifetime, and isotropic diffusion into the surrounding medium. Our predictions strongly depend on the low- and high-energy cutoffs given in the particle distribution. Our results indicate that extended radio emission can be detected from the Lighthouse Nebula without the need to invoke extreme values for the model parameters. We provide synthetic synchrotron maps that can be used to constrain these results with observations by current highly sensitive radio instruments.
We propose a scheme to realize parity-time (PT) symmetric photonic Lieb lattices of ribbon shape and complex couplings, thereby demonstrating the higher-order exceptional point (EP) and Landau-Zener Bloch (LZB) oscillations in presence of a refractive index gradient. Quite different from non-Hermitian flatband lattices with on-site gain/loss, which undergo thresholdless PT symmetry breaking, the spectrum for such quasi-one-dimensional Lieb lattices has completely real values when the index gradient is applied perpendicular to the ribbon, and a triply degenerated (third-order) EP with coalesced eigenvalues and eigenvectors emerges only when the amplitude of gain/loss ratio reaches a certain threshold value. When the index gradient is applied parallel to the ribbon, the LZB oscillations exhibit intriguing characteristics including asymmetric energy transition and pseudo-Hermitian propagation as the flatband is excited. Meanwhile, a secondary emission occurs each time when the oscillatory motion passes through the EP, leading to distinct energy distribution in the flatband when a dispersive band is excited. Such novel phenomena may appear in other non-Hermitian flatband systems. Our work may also bring insight and suggest a photonic platform to study the symmetry and topological characterization of higher-order EPs that may find unique applications in for example enhancing sensitivity.
As a model-free optimization and decision-making method, deep reinforcement learning (DRL) has been widely applied to the filed of energy management in energy Internet. While, some DRL-based energy management schemes also incorporate the prediction module used by the traditional model-based methods, which seems to be unnecessary and even adverse. In this work, we present the standard DRL-based energy management scheme with and without prediction. Then, these two schemes are compared in the unified energy management framework. The simulation results demonstrate that the energy management scheme without prediction is superior over the scheme with prediction. This work intends to rectify the misuse of DRL methods in the field of energy management.
A reliable technique for deductive program verification should be proven sound with respect to the semantics of the programming language. For each different language, the construction of a separate soundness proof is often a laborious undertaking. In language-independent program verification, common aspects of computer programs are addressed to enable sound reasoning for all languages. In this work, we propose a solution for the sound reasoning about iteration and recursion based on the big-step operational semantics of any programming language. We give inductive proofs on the soundness and relative completeness of our reasoning technique. We illustrate the technique at simplified programming languages of the imperative and functional paradigms, with diverse features. We also mechanism all formal results in the Coq proof assistant.
Reconstruction-based methods play an important role in unsupervised anomaly detection in images. Ideally, we expect a perfect reconstruction for normal samples and poor reconstruction for abnormal samples. Since the generalizability of deep neural networks is difficult to control, existing models such as autoencoder do not work well. In this work, we interpret the reconstruction of an image as a divide-and-assemble procedure. Surprisingly, by varying the granularity of division on feature maps, we are able to modulate the reconstruction capability of the model for both normal and abnormal samples. That is, finer granularity leads to better reconstruction, while coarser granularity leads to poorer reconstruction. With proper granularity, the gap between the reconstruction error of normal and abnormal samples can be maximized. The divide-and-assemble framework is implemented by embedding a novel multi-scale block-wise memory module into an autoencoder network. Besides, we introduce adversarial learning and explore the semantic latent representation of the discriminator, which improves the detection of subtle anomaly. We achieve state-of-the-art performance on the challenging MVTec AD dataset. Remarkably, we improve the vanilla autoencoder model by 10.1% in terms of the AUROC score.
Zero-resource named entity recognition (NER) severely suffers from data scarcity in a specific domain or language. Most studies on zero-resource NER transfer knowledge from various data by fine-tuning on different auxiliary tasks. However, how to properly select training data and fine-tuning tasks is still an open problem. In this paper, we tackle the problem by transferring knowledge from three aspects, i.e., domain, language and task, and strengthening connections among them. Specifically, we propose four practical guidelines to guide knowledge transfer and task fine-tuning. Based on these guidelines, we design a target-oriented fine-tuning (TOF) framework to exploit various data from three aspects in a unified training manner. Experimental results on six benchmarks show that our method yields consistent improvements over baselines in both cross-domain and cross-lingual scenarios. Particularly, we achieve new state-of-the-art performance on five benchmarks.
This paper presents a novel intrinsic image transfer (IIT) algorithm for illumination manipulation, which creates a local image translation between two illumination surfaces. This model is built on an optimization-based framework consisting of three photo-realistic losses defined on the sub-layers factorized by an intrinsic image decomposition. We illustrate that all losses can be reduced without the necessity of taking an intrinsic image decomposition under the well-known spatial-varying illumination illumination-invariant reflectance prior knowledge. Moreover, with a series of relaxations, all of them can be directly defined on images, giving a closed-form solution for image illumination manipulation. This new paradigm differs from the prevailing Retinex-based algorithms, as it provides an implicit way to deal with the per-pixel image illumination. We finally demonstrate its versatility and benefits to the illumination-related tasks such as illumination compensation, image enhancement, and high dynamic range (HDR) image compression, and show the high-quality results on natural image datasets.
We present animatable neural radiance fields (animatable NeRF) for detailed human avatar creation from monocular videos. Our approach extends neural radiance fields (NeRF) to the dynamic scenes with human movements via introducing explicit pose-guided deformation while learning the scene representation network. In particular, we estimate the human pose for each frame and learn a constant canonical space for the detailed human template, which enables natural shape deformation from the observation space to the canonical space under the explicit control of the pose parameters. To compensate for inaccurate pose estimation, we introduce the pose refinement strategy that updates the initial pose during the learning process, which not only helps to learn more accurate human reconstruction but also accelerates the convergence. In experiments we show that the proposed approach achieves 1) implicit human geometry and appearance reconstruction with high-quality details, 2) photo-realistic rendering of the human from novel views, and 3) animation of the human with novel poses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا