Do you want to publish a course? Click here

108 - X. Zhou , J. Buchner , M. Barta 2015
Aims: We investigate the electron acceleration in convective electric fields of cascading magnetic reconnection in a flaring solar corona and show the resulting hard X-ray (HXR) radiation spectra caused by Bremsstrahlung for the coronal source. Methods: We perform test particle calculation of electron motions in the framework of a guiding center approximation. The electromagnetic fields and their derivatives along electron trajectories are obtained by linearly interpolating the results of high-resolution adaptive mesh refinement (AMR) MHD simulations of cascading magnetic reconnection. Hard X-ray (HXR) spectra are calculated using an optically thin Bremsstrahlung model. Results: Magnetic gradients and curvatures in cascading reconnection current sheet accelerate electrons: trapped in magnetic islands, precipitating to the chromosphere and ejected into the interplanetary space. The final location of an electron is determined by its initial position, pitch angle and velocity. These initial conditions also influence electron acceleration efficiency. Most of electrons have enhanced perpendicular energy. Trapped electrons are considered to cause the observed bright spots along coronal mass ejection CME-trailing current sheets as well as the flare loop-top HXR emissions.
Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.
197 - X. Zhou , V. Schmitt , P. Bertet 2014
We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of 8 superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate mode of operation. Phase sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.
125 - X. Zhou , L. Ma , Z. Shi 2014
In this work, IrMn$_{3}$/insulating-Y$_{3}$Fe$_{5}$O$_{12}$ exchange-biased bilayers are studied. The behavior of the net magnetic moment $Delta m_{AFM}$ in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The $Delta m_{AFM}$ is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis are induced by the irreversible switching of the $Delta m_{AFM}$. In the training effect, the $Delta m_{AFM}$ changes continuously. This work highlights the fundamental role of the $Delta m_{AFM}$ in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.
105 - W. Zhou , X. Li , X. Zhou 2014
High-quality superconducting KxFeySe2 single crystals were synthesized using an easy one-step method. Detailed annealing studies were performed to make clear the phase formation process in KxFeySe2. Compatible observations were found in temperature-dependent X-ray diffraction patterns, back-scattered electron images and corresponding electromagnetic properties, which proved that good superconductivity performance was close related to the microstructure of superconducting component. Analysis based on the scaling behavior of flux pinning force indicated that the dominant pinning mechanism was delta(Tc) pinning and independent of connectivity. The annealing dynamics studies were also performed, which manifested that the humps in temperature-dependent resistance (RT) curves were induced by competition between the metallic/superconducting and the semiconducting/insulating phases.
368 - X. Zhou , S. Sanwlani , W. Liu 2011
Lateral quantum dot molecules consist of at least two closely-spaced InGaAs quantum dots arranged such that the axis connecting the quantum dots is perpendicular to the growth direction. These quantum dot complexes are called molecules because the small spacing between the quantum dots is expected to lead to the formation of molecular-like delocalized states. We present optical spectroscopy of ensembles and individual lateral quantum dot molecules as a function of electric fields applied along the growth direction. The results allow us to characterize the energy level structure of lateral quantum dot molecules and the spectral signatures of both charging and many-body interactions. We present experimental evidence for the existence of molecular-like delocalized states for electrons in the first excited energy shell.
90 - L. Zhang , Q.-R. Yuan , X. Zhou 2009
An optical photometric observation with the Beijing-Arizona-Taiwan-Connecticut (BATC) multicolor system is carried out for A98 (z=0.104), a galaxy cluster with two large enhancements in X-ray surface brightness. The spectral energy distributions (SEDs) covering 15 intermediate bands are obtained for all sources detected down to V ~ 20 mag in a field of $58 times 58$. After the star-galaxy separation by the color-color diagrams, a photometric redshift technique is applied to the galaxy sample for further membership determination. The color-magnitude relation is taken as a further restriction of the early-type cluster galaxies. As a result, a list of 198 faint member galaxies is achieved. Based on newly generated sample of member galaxies, the dynamical substructures, A98N, A98S, and A98W, are investigated in detail. A separate galaxy group, A98X, is also found to the south of main concentration of A98, which is gravitationally unbound to A98. For 74 spectroscopically confirmed member galaxies, the environmental effect on the star formation histories is found. The bright galaxies in the core region are found to have shorter time scales of star formation, longer mean stellar ages, and higher metallicities of interstellar medium, which can be interpreted in the context of hierarchical cosmological scenario.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا