Do you want to publish a course? Click here

The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: For to all those who have, more will be given. Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamics of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew rich get richer effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his/her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect, and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals, and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience.
In this study, we attempted to determine how eigenvalues change, according to random matrix theory (RMT), in stock market data as the number of stocks comprising the correlation matrix changes. Specifically, we tested for changes in the eigenvalue properties as a function of the number and type of stocks in the correlation matrix. We determined that the value of the eigenvalue increases in proportion with the number of stocks. Furthermore, we noted that the largest eigenvalue maintains its identical properties, regardless of the number and type, whereas other eigenvalues evidence different features.
We empirically investigated the effects of market factors on the information flow created from N(N-1)/2 linkage relationships among stocks. We also examined the possibility of employing the minimal spanning tree (MST) method, which is capable of reducing the number of links to N-1. We determined that market factors carry important information value regarding information flow among stocks. Moreover, the information flow among stocks evidenced time-varying properties according to the changes in market status. In particular, we noted that the information flow increased dramatically during periods of market crises. Finally, we confirmed, via the MST method, that the information flow among stocks could be assessed effectively with the reduced linkage relationships among all links between stocks from the perspective of the overall market.
In this study, we have investigated empirically the effects of market properties on the degree of diversification of investment weights among stocks in a portfolio. The weights of stocks within a portfolio were determined on the basis of Markowitzs portfolio theory. We identified that there was a negative relationship between the influence of market properties and the degree of diversification of the weights among stocks in a portfolio. Furthermore, we noted that the random matrix theory method could control the properties of correlation matrix between stocks; this may be useful in improving portfolio management for practical application.
The Metropolitan Seoul Subway system, consisting of 380 stations, provides the major transportation mode in the metropolitan Seoul area. Focusing on the network structure, we analyze statistical properties and topological consequences of the subway system. We further study the passenger flows on the system, and find that the flow weight distribution exhibits a power-law behavior. In addition, the degree distribution of the spanning tree of the flows also follows a power law.
We investigated financial market data to determine which factors affect information flow between stocks. Two factors, the time dependency and the degree of efficiency, were considered in the analysis of Korean, the Japanese, the Taiwanese, the Canadian, and US market data. We found that the frequency of the significant information decreases as the time interval increases. However, no significant information flow was observed in the time series from which the temporal time correlation was removed. These results indicated that the information flow between stocks evidences time-dependency properties. Furthermore, we discovered that the difference in the degree of efficiency performs a crucial function in determining the direction of the significant information flow.
We investigate the traffic flows of the Korean highway system, which contains both public and private transportation information. We find that the traffic flow T(ij) between city i and j forms a gravity model, the metaphor of physical gravity as described in Newtons law of gravity, P(i)P(j)/r(ij)^2, where P(i) represents the population of city i and r(ij) the distance between cities i and j. It is also shown that the highway network has a heavy tail even though the road network is a rather uniform and homogeneous one. Compared to the highway network, air and public ground transportation establish inhomogeneous systems and have power-law behaviors.
We investigate scaling and memory effects in return intervals between price volatilities above a certain threshold $q$ for the Japanese stock market using daily and intraday data sets. We find that the distribution of return intervals can be approximated by a scaling function that depends only on the ratio between the return interval $tau$ and its mean $<tau>$. We also find memory effects such that a large (or small) return interval follows a large (or small) interval by investigating the conditional distribution and mean return interval. The results are similar to previous studies of other markets and indicate that similar statistical features appear in different financial markets. We also compare our results between the period before and after the big crash at the end of 1989. We find that scaling and memory effects of the return intervals show similar features although the statistical properties of the returns are different.
This study investigates empirically whether the degree of stock market efficiency is related to the prediction power of future price change using the indices of twenty seven stock markets. Efficiency refers to weak-form efficient market hypothesis (EMH) in terms of the information of past price changes. The prediction power corresponds to the hit-rate, which is the rate of the consistency between the direction of actual price change and that of predicted one, calculated by the nearest neighbor prediction method (NN method) using the out-of-sample. In this manuscript, the Hurst exponent and the approximate entropy (ApEn) are used as the quantitative measurements of the degree of efficiency. The relationship between the Hurst exponent, reflecting the various time correlation property, and the ApEn value, reflecting the randomness in the time series, shows negative correlation. However, the average prediction power on the direction of future price change has the strongly positive correlation with the Hurst exponent, and the negative correlation with the ApEn. Therefore, the market index with less market efficiency has higher prediction power for future price change than one with higher market efficiency when we analyze the market using the past price change pattern. Furthermore, we show that the Hurst exponent, a measurement of the long-term memory property, provides more significant information in terms of prediction of future price changes than the ApEn and the NN method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا