Do you want to publish a course? Click here

Let $G$ be a connected reductive group over the non-archime-dean local field $F$ and let $pi$ be a supercuspidal representation of $G(F)$. The local Langlands conjecture posits that to such a $pi$ can be attached a parameter $L(pi)$, which is an equivalence class of homomorphisms from the Weil-Deligne group with values in the Langlands $L$-group ${}^LG$ over an appropriate algebraically closed field $C$ of characteristic $0$. When $F$ is of positive characteristic $p$ then Genestier and Lafforgue have defined a parameter, $L^{ss}(pi)$, which is a homomorphism $W_F ra {}^LG(C)$ that is {it semisimple} in the sense that, if the image of $L^{ss}(pi)$, intersected with the Langlands dual group $hat{G}(C)$, is contained in a parabolic subgroup $P subset hat{G}(C)$, then it is contained in a Levi subgroup of $P$. If the Frobenius eigenvalues of $L^{ss}(pi)$ are pure in an appropriate sense, then the local Langlands conjecture asserts that the image of $L^{ss}(pi)$ is in fact {it irreducible} -- its image is contained in no proper parabolic $P$. In particular, unless $G = GL(1)$, $L^{ss}(pi)$ is ramified: it is non-trivial on the inertia subgroup $I_F subset W_F$. In this paper we prove, at least when $G$ is split and semisimple, that this is the case provided $pi$ can be obtained as the induction of a representation of a compact open subgroup $U subset G(F)$, and provided the constant field of $F$ is of order greater than $3$. Conjecturally every $pi$ is compactly induced in this sense, and the property was recently proved by Fintzen to be true as long as $p$ does not divide the order of the Weyl group of $G$. The proof is an adaptation of the globalization method of cite{GLo} when the base curve is $PP^1$, and a simple application of Delignes Weil II.
98 - Will Sawin 2021
The multicolor Ramsey number problem asks, for each pair of natural numbers $ell$ and $t$, for the largest $ell$-coloring of a complete graph with no monochromatic clique of size $t$. Recent works of Conlon-Ferber and Wigderson have improved the longstanding lower bound for this problem. We make a further improvement by replacing an explicit graph appearing in their constructions by a random graph. Graphs useful for this construction are exactly those relevant for a problem of ErdH{o}s on graphs with no large cliques and few large independent sets. We also make some basic observations about this problem.
139 - Will Sawin 2021
We prove estimates for the level of distribution of the Mobius function, von Mangoldt function, and divisor functions in squarefree progressions in the ring of polynomials over a finite field. Each level of distribution converges to $1$ as $q$ goes to $infty$, and the power savings converges to square-root cancellation as $q$ goes to $infty$. These results in fact apply to a more general class of functions, the factorization functions, that includes these three. The divisor estimates have applications to the moments of $L$-functions, and the von Mangoldt estimate to one-level densities.
We establish cancellation in short sums of certain special trace functions over $mathbb{F}_q[u]$ below the P{o}lya-Vinogradov range, with savings approaching square-root cancellation as $q$ grows. This is used to resolve the $mathbb{F}_q[u]$-analog of Chowlas conjecture on cancellation in M{o}bius sums over polynomial sequences, and of the Bateman-Horn conjecture in degree $2$, for some values of $q$. A final application is to sums of trace functions over primes in $mathbb{F}_q[u]$.
Let $L/K$ be a quadratic extension of global fields. We study Cohen-Lenstra heuristics for the $ell$-part of the relative class group $G_{L/K} := textrm{Cl}(L/K)$ when $K$ contains $ell^n$th roots of unity. While the moments of a conjectural distribution in this case had previously been described, no method to calculate the distribution given the moments was known. We resolve this issue by introducing new invariants associated to the class group, $psi_{L/K}$ and $omega_{L/K},$ and study the distribution of $(G_{L/K}, psi_{L/K}, omega_{L/K})$ using a linear random matrix model. Using this linear model, we calculate the distribution (including our new invariants) in the function field case, and then make local adjustments at the primes lying over $ell$ and $infty$ to make a conjecture in the number field case, which agrees with some numerical experiments.
Hypergraphs provide a natural representation for many real world datasets. We propose a novel framework, HNHN, for hypergraph representation learning. HNHN is a hypergraph convolution network with nonlinear activation functions applied to both hypernodes and hyperedges, combined with a normalization scheme that can flexibly adjust the importance of high-cardinality hyperedges and high-degree vertices depending on the dataset. We demonstrate improved performance of HNHN in both classification accuracy and speed on real world datasets when compared to state of the art methods.
185 - Will Sawin 2020
Work on generalizations of the Cohen-Lenstra and Cohen-Martinet heuristics has drawn attention to probability measures on the space of isomorphism classes of profinite groups. As is common in probability theory, it would be desirable to know that these measures are determined by their moments, which in this context are the expected number of surjections to a fixed finite group. We show a wide class of measures, including those appearing in a recent paper of Liu, Wood, and Zurieck-Brown, have this property. The method is to work locally with groups that are extensions of a fixed group by a product of finite simple groups. This eventually reduces the problem to the case of powers of a fixed finite simple group, which can be handled by a simple explicit calculation. We can also prove a similar theorem for random modules over an algebra.
It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least $3$ over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thel`ene that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least $3$. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces.
191 - Will Sawin 2020
This article is an overview of the vanishing cycles method in number theory over function fields. We first explain how this works in detail in a toy example, and then give three examples which are relevant to current research. The focus will be a general explanation of which sorts of problems this method can be applied to.
115 - Brian Lawrence , Will Sawin 2020
Faltings proved that there are finitely many abelian varieties of genus $g$ of a number field $K$, with good reduction outside a finite set of primes $S$. Fixing one of these abelian varieties $A$, we prove that there are finitely many smooth hypersurfaces in $A$, with good reduction outside $S$, representing a given ample class in the Neron-Severi group of $A$, up to translation, as long as the dimension of $A$ is at least $4$. Our approach builds on the approach of arXiv:1807.02721 which studies $p$-adic variations of Hodge structure to turn finiteness results for $p$-adic Galois representations into geometric finiteness statements. A key new ingredient is an approach to proving big monodromy for the variations of Hodge structure arising from the middle cohomology of these hypersurfaces using the Tannakian theory of sheaf convolution on abelian varieties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا