Do you want to publish a course? Click here

This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In these approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.
Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) no explicit hypothesis label is required; 4) the shared CNN may be well pre-trained with a large-scale single-label image dataset, e.g. ImageNet; and 5) it may naturally output multi-label prediction results. Experimental results on Pascal VOC2007 and VOC2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 84.2% by HCP only and 90.3% after the fusion with our complementary result in [47] based on hand-crafted features on the VOC2012 dataset, which significantly outperforms the state-of-the-arts with a large margin of more than 7%.
122 - Gechun Liang , Wei Wei 2013
This paper introduces a new class of optimal switching problems, where the player is allowed to switch at a sequence of exogenous Poisson arrival times, and the underlying switching system is governed by an infinite horizon backward stochastic differential equation system. The value function and the optimal switching strategy are characterized by the solution of the underlying switching system. In a Markovian setting, the paper gives a complete description of the structure of switching regions by means of the comparison principle.
A new method called Neighbor Cell Deposited Energy Ratio (NCDER) is proposed to reconstruct incidence position in a single layer for a 3-dimensional imaging electromagnetic calorimeter (ECAL).This method was applied to reconstruct the ECAL test beam data for the Alpha Magnetic Spectrometer-02 (AMS-02). The results show that this method can achieve an angular resolution of 7.36pm 0.08 / sqrt(E) oplus 0.28 pm 0.02 degree in the determination of the photons direction, which is much more precise than that obtained with the commonly-adopted Center of Gravity(COG) method (8.4 pm 0.1 /sqrt(E) oplus 0.8pm0.3 degree). Furthermore, since it uses only the properties of electromagnetic showers, this new method could also be used for other type of fine grain sampling calorimeters.
Its generally believed that young and rapidly rotating pulsars are important sites of particles acceleration, in which protons can be accelerated to relativistic energy above the polar cap region if the magnetic moment is antiparallel to the spin axis($vec{mu}cdotvec{Omega}<0$). To obtain the galactic diffusive neutrinos and gamma-rays for TeV, firstly,we use Monte Carlo(MC) method to generate a sample of young pulsars with ages less than $10^6$ yrs in our galaxy ; secondly, the neutrinos and high-energy gamma-rays can be produced through photomeson process with the interaction of energetic protons and soft X-ray photons ($p+gammarightarrow Delta^+rightarrow n+pi^+/p+pi^0$) for single pulsar, and these X-ray photons come from the neutron star surface. The results suggest that the diffusive TeV flux of neutrinos are lower than background flux, which indicated it is difficult to be detected by the current neutrino telescopes.
We propose a unified structural credit risk model incorporating both insolvency and illiquidity risks, in order to investigate how a firms default probability depends on the liquidity risk associated with its financing structure. We assume the firm finances its risky assets by mainly issuing short- and long-term debt. Short-term debt can have either a discrete or a more realistic staggered tenor structure. At rollover dates of short-term debt, creditors face a dynamic coordination problem. We show that a unique threshold strategy (i.e., a debt run barrier) exists for short-term creditors to decide when to withdraw their funding, and this strategy is closely related to the solution of a non-standard optimal stopping time problem with control constraints. We decompose the total credit risk into an insolvency component and an illiquidity component based on such an endogenous debt run barrier together with an exogenous insolvency barrier.
265 - Wei Wei , J. W. Zhang , Tian Liu 2008
We propose an approach to realize a quantum random number generator (QRNG) based on the photon number decision of weak laser pulses. This type of QRNG can generate true random numbers at a high speed and can be adjusted to zero bias conveniently, thus is suitable for the applications in quantum cryptography.
In the quasilinear Regge trajectory ansatz, some useful linear mass inequalities, quadratic mass inequalities and quadratic mass equalities are derived for mesons and baryons. Based on these relations, mass ranges of some mesons and baryons are given. The masses of bc-bar and ss-bar belonging to the pseudoscalar, vector and tensor meson multiplets are also extracted. The J^P of the baryon Xi_cc(3520) is assigned to be 1/2^+. The numerical values for Regge slopes and intercepts of the 1/2^+ and 3/2^+ SU(4) baryon trajectories are extracted and the masses of the orbital excited baryons lying on the 1/2^+ and 3/2^+ trajectories are estimated. The J^P assignments of baryons Xi_c(2980), Xi_c(3055), Xi_c(3077) and Xi_c(3123) are discussed. The predictions are in reasonable agreement with the existing experimental data and those suggested in many other different approaches. The mass relations and the predictions may be useful for the discovery of the unobserved meson and baryon states and the J^P assignment of these states.
128 - Li-Gang Wang , Wei-Wei Zheng , 2008
In this paper, we consider the effect of the atmospheric turbulence on the propagation of optical vertex formed from the radial coherent laser beam array, with the initially well-defined phase distribution. The propagation formula of the radial coherent laser array passing through the turbulent atmosphere is analytically derived by using the extended Huygens-Fresnel diffraction integral. Based on the derived formula, the effect of the atmospheric turbulence on the propagation properties of such laser arrays has been studied in great detail. Our main results show that the atmospheric turbulence may result in the prohibition of the formation of the optical vortex or the disappearance of the formed optical vortex, which are very different from that in the free space. The formed optical vortex with the higher topological charge may propagate over a much longer distance in the moderate or weak turbulent atmosphere. After the sufficient long-distance atmospheric propagation, all the output beams (even with initially different phase distributions) finally lose the vortex property and gradually become the Gaussian-shaped beams, and in this case the output beams actually become incoherent light fields due to the decoherence effect of the turbulent atmosphere.
In this paper we study the properties of diquarks (composed of $u$ and/or $d$ quarks) in the Bethe-Salpeter formalism under the covariant instantaneous approximation. We calculate their BS wave functions and study their effective interaction with the pion. Using the effective coupling constant among the diquarks and the pion, in the heavy quark limit $m_Qtoinfty$, we calculate the decay widths of $Sigma_Q^{(*)}$ ($Q=c,b$) in the BS formalism under the covariant instantaneous approximation and then give predictions of the decay widths $Gamma(Sigma_b^{(*)}toLambda_b+pi)$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا