Do you want to publish a course? Click here

The promise of quantum information technology hinges on the ability to control large numbers of qubits with high-fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.9% have been realized with individual qubits, though their performance has been limited to 98.67% when driving two qubits simultaneously. Here we present single-qubit randomized benchmarking in a two-dimensional array of spin qubits, for one, two and four simultaneously driven qubits. We find that by carefully tuning the qubit parameters, we achieve native gate fidelities of 99.9899(4)%, 99.904(4)% and 99.00(4)% respectively. We also find that cross talk with next-nearest neighbor pairs induces errors that can be imperceptible within the error margin, indicating that cross talk can be highly local. These characterizations of the single-qubit gate quality and the ability to operate simultaneously are crucial aspects for scaling up germanium based quantum information technology.
The prospect of building quantum circuits using advanced semiconductor manufacturing positions quantum dots as an attractive platform for quantum information processing. Extensive studies on various materials have led to demonstrations of two-qubit logic in gallium arsenide, silicon, and germanium. However, interconnecting larger numbers of qubits in semiconductor devices has remained an outstanding challenge. Here, we demonstrate a four-qubit quantum processor based on hole spins in germanium quantum dots. Furthermore, we define the quantum dots in a two-by-two array and obtain controllable coupling along both directions. Qubit logic is implemented all-electrically and the exchange interaction can be pulsed to freely program one-qubit, two-qubit, three-qubit, and four-qubit operations, resulting in a compact and high-connectivity circuit. We execute a quantum logic circuit that generates a four-qubit Greenberger-Horne-Zeilinger state and we obtain coherent evolution by incorporating dynamical decoupling. These results are an important step towards quantum error correction and quantum simulation with quantum dots.
Qubits based on quantum dots have excellent prospects for scalable quantum technology due to their inherent compatibility with standard semiconductor manufacturing. While early on it was recognized that holes may offer a multitude of favourable properties for fast and scalable quantum control, research thus far has remained almost exclusively restricted to the simpler electron system. However, recent developments with holes have led to separate demonstrations of single-shot readout and fast quantum logic, albeit only in the multi-hole regime. Here, we establish a single-hole spin qubit in germanium and demonstrate the integration of single-shot readout and quantum control. Moreover, we make use of Pauli spin blockade, allowing to arbitrarily set the qubit resonance frequency, while providing large readout windows. We deplete a planar germanium double quantum dot to the last hole, confirmed by radio-frequency reflectrometry charge sensing, and achieve single-shot spin readout. To demonstrate the integration of the readout and qubit operation, we show Rabi driving on both qubits and find remarkable electric control over their resonance frequencies. Finally, we analyse the spin relaxation time, which we find to exceed one millisecond, setting the benchmark for hole-based spin qubits. The ability to coherently manipulate a single hole spin underpins the quality of strained germanium and defines an excellent starting point for the construction of novel quantum hardware.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا